Citation: Zelong LIANG, Shijia QIN, Pengfei GUO, Hang XU, Bin ZHAO. Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409 shu

Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles

Figures(5)

  • A 2D metal-organic framework (Zn-MOF, {[Zn(btz)2]·DMF·CH3OH}n, Hbtz=benzotriazole, DMF=N, N- dimethylformamide) was synthesized, exhibiting high stability in solvents, acid-base, and thermal conditions. The stable structure and uncoordinated nitrogen atoms enable Zn-MOF to effectively enrich silver ions, which can be converted into silver nanoparticles anchored on the MOF (Ag@Zn-MOF) through heat treatment. The silver nanoparticle loading (mass fraction) of the Ag@Zn-MOF composite reached 1.84%. The Zn-MOF framework remained stable after pyrolytic reduction. Electrocatalytic CO2 reduction performance tests demonstrated that, compared to Zn-MOF, the Faraday efficiency of Ag@Zn-MOF for CO production increased from 59.6% to 92.1%, with a current density of 30.3 mA·cm-2 at -1.34 V (vs RHE), highlighting its superior electrocatalytic performance.
  • 加载中
    1. [1]

      LIU K K, MENG Z, FANG Y, JIANG H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3: 100133  doi: 10.1016/j.esci.2023.100133

    2. [2]

      AN B, LI Z, SONG Y, ZHANG J Z, ZENG L Z, WANG C, LIN W B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol[J]. Nat. Catal., 2019, 2(8): 709-717  doi: 10.1038/s41929-019-0308-5

    3. [3]

      YANG Z W, CHEN J M, LIANG Z L, XIE W J, ZHAO B, HE L N. Anodic product-derived Bi-MOF as pre-catalyst for cathodic CO2 reduction: A novel strategy for paired electrolysis[J]. ChemCatChem, 2023, 15(2): e202201321  doi: 10.1002/cctc.202201321

    4. [4]

      ZHU Z H, ZHAO B H, HOU S L, JIANG X L, LIANG Z L, ZHANG B, ZHAO B. A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate[J]. Angew. Chem. —Int. Edit., 2021, 60(43): 23394-23402  doi: 10.1002/anie.202110387

    5. [5]

      HAN B, JIN Y C, CHEN B T, ZHOU W, YU B Q, WEI C Y, WANG H L, WANG K, CHEN Y L, CHEN B L, JIANG J Z. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis[J]. Angew. Chem. —Int. Edit., 2022, 61(1): e202114244  doi: 10.1002/anie.202114244

    6. [6]

      GU J, HSU C S, BAI L, CHEN H M, HU X L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094  doi: 10.1126/science.aaw7515

    7. [7]

      WANG Y R, HUANG, Q, HE C T, CHEN Y F, LIU J, SHEN F C, LAN Y Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nat. Commun., 2018, 9(1): 4466  doi: 10.1038/s41467-018-06938-z

    8. [8]

      ZHU Q G, YANG D X, LIU H Z, SUN X F, CHEN C J, BI J H, LIU J Y, WU H H, HAN B X. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction[J]. Angew. Chem. —Int. Edit., 2020, 59: 8896-8901  doi: 10.1002/anie.202001216

    9. [9]

      ZHONG M, TRAN K, MIN Y M, WANG C H, WANG Z Y, DINH C T, LUNA P D, YU Z Q, RASOULI A S, BRODERSEN P, SUN S, VOZNYY O, TAN C S, ASKERKA M, CHE F L, LIU M, SEIFITOKALDANI A, PANG Y J, LO S C, IP A, ULISSI Z, SARGENT E H. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. Nature, 2020, 581(7807): 178-183  doi: 10.1038/s41586-020-2242-8

    10. [10]

      AJMAL S, YASIN G, KUMAR A, TABISH M, IBRAHEEM S, SAMMED K A, MUSHTAQ M A, SAAD A, MO Z S, ZHAO W. A disquisition on CO2 electroreduction to C2H4: An engineering and design perspective looking beyond novel choosy catalyst materials[J]. Coord. Chem. Rev., 2023, 485: 215099  doi: 10.1016/j.ccr.2023.215099

    11. [11]

      XU Z K, PENG C, LUO G, YANG S T, YU P G, YAN S, SHAKOURI M, WANG Z Q, SHAM T K, ZHENG G F. High-rate CO2-to-CH4 electrosynthesis by undercoordinated Cu sites in alkaline-earth-metal perovskites with strong basicity[J]. Adv. Energy Mater., 2023, 13(19): 2204417  doi: 10.1002/aenm.202204417

    12. [12]

      YE R P, DING J, GONG W B, ARGYLE M D, ZHONG Q, WANG Y J, RUSSELL C K, XU Z H, RUSSELL A G, LI Q H, FAN M H, YAO Y G. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nat. Commun., 2019, 10(1): 5698  doi: 10.1038/s41467-019-13638-9

    13. [13]

      PATEL D M, KODGIRE P, DWIVEDI A H. Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review[J]. J. Clean Prod., 2020, 245: 118838  doi: 10.1016/j.jclepro.2019.118838

    14. [14]

      ZHU Z H, LIANG Z L, JIAO Z H, JIANG X L, XIE Y, XU H, ZHAO B. A facile strategy to obtain low-cost and high-performance gold-based catalysts from artificial electronic waste by [Zr48Ni6] nano-cages in MOFs for CO2 electroreduction to CO[J]. Angew. Chem. —Int. Edit., 2022, 61(49): e202214243  doi: 10.1002/anie.202214243

    15. [15]

      HAN L L, SONG S J, LIU M J, YAO S Y, LIANG Z X, CHENG H, REN Z H, LIU W, LIN R Q, QI G C, LIU X J, WU Q, LUO J, XIN H L L. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4[J]. J. Am. Chem. Soc., 2020, 142(29): 12563-12567  doi: 10.1021/jacs.9b12111

    16. [16]

      LI Q, FU J J, ZHU W L, CHEN Z Z, SHEN B, WU L H, XI Z, WANG T Y, LU G, ZHU J J, SUN S H. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. J. Am. Chem. Soc., 2017, 139(12): 4290-4293  doi: 10.1021/jacs.7b00261

    17. [17]

      MENG Z Y, QIU Z M, SHI Y X, WANG S X, ZHANG G X, PI Y C, PANG H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3: 100092  doi: 10.1016/j.esci.2023.100092

    18. [18]

      HU X S, LIU X Y, HU X, ZHAO C Y, GUAN Q X, LI W. Hybrid catalyst coupling Zn single atoms and CuNx clusters for synergetic catalytic reduction of CO2[J]. Adv. Funct. Mater., 2023, 33(16): 2214215  doi: 10.1002/adfm.202214215

    19. [19]

      WANG R, LI C, WU J X, DU W, JIANG T, YANG Y Z, YANG X J, GONG M. Coordination-promoted bio-catechol electro-reforming toward sustainable polymer production[J]. J. Am. Chem. Soc., 2023, 145(33): 18516-18528  doi: 10.1021/jacs.3c05120

    20. [20]

      GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71  doi: 10.1038/nature16455

    21. [21]

      YAN W Q, MO Q J, HE Q T, LI X P, XUE Z Q, LU Y L, CHEN J, ZHENG K, FAN Y N, LI G Q, SU C Y. Anion modulation of Ag- imidazole cuboctahedral cage microenvironments for efficient electrocatalytic CO2 reduction[J]. Angew. Chem. —Int. Edit., 2024: e202406564

    22. [22]

      LI B, LEI Q J, QIN T, ZHANG X X, ZHAO D S, WANG F, LI W Q, ZHANG Z G, FAN L M. Anion exchange strategy to improve electrocatalytic hydrogen evolution performances in cationic metal-organic frameworks[J]. CrystEngComm, 2021, 23(47): 8260-8264  doi: 10.1039/D1CE01210J

    23. [23]

      LIANG Z L, ZHANG Z H, JIAO Y E, XU H, HU H S, ZHAO B. Highly stable 72-nuclearity nanocages for efficient synthesis of aryl nitriles via Ni/Cu synergistic catalysis[J]. J. Am. Chem. Soc., 2024, 146(15): 10776-10784  doi: 10.1021/jacs.4c00885

    24. [24]

      ZHAO J, JIAO Z H, HOU S L, MA Y, ZHAO B. Anchoring Ag􀃬 into nitro-functionalized metal-organic frameworks: Effectively catalyzing cycloaddition of CO2 with propargylic alcohols under mild conditions[J]. ACS Appl. Mater. Interfaces, 2021, 13(38): 45558-45565  doi: 10.1021/acsami.1c13438

    25. [25]

      MAURIN A, ROBERT M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective efficient CO2-to-CO conversion in water[J]. J. Am. Chem. Soc., 2016, 138(8): 2492-2495  doi: 10.1021/jacs.5b12652

    26. [26]

      POATER J, GIMFERRER M, POATER A. Covalent and ionic capacity of MOFs to sorb small gas molecules[J]. Inorg. Chem., 2018, 57(12): 6981-6990  doi: 10.1021/acs.inorgchem.8b00670

    27. [27]

      YAO S, JIANG S Y, WANG B F, YIN H Q, XIANG X Y, TANG Z, AN C H, LU T B, ZHANG Z M. Polyoxometalate confined synthesis of BiVO4 nanocluster for urea production with remarkable O2/N2 tolerance[J]. Angew. Chem. —Int. Edit. 2024: e202418637. https://doi.org/10.1002/anie.202418637

    28. [28]

      FU S S, YAO S, GUO S, GUO G C, YUAN W J, LU T B, ZHANG Z M. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF[J]. J. Am. Chem. Soc., 2021, 143(49): 20792-20801  doi: 10.1021/jacs.1c08908

    29. [29]

      MAMAGHANI A H, LIU J W, ZHANG Z, GAO R, WU Y X, LI H B, FENG M, CHEN Z W. Promises of MOF-based and MOF-derived materials for electrocatalytic CO2 reduction[J]. Adv. Energy Mater., 2024, 14: 2402278  doi: 10.1002/aenm.202402278

    30. [30]

      HU S, QIAO P Z, YI X L, LEI Y M, HU H L, YE J H, WANG D F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride[J]. Angew. Chem. —Int. Edit., 2023, 62(26): e202304585  doi: 10.1002/anie.202304585

    31. [31]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009, 42: 339-341  doi: 10.1107/S0021889808042726

    32. [32]

      SHAO K Z, ZHAO Y H, XING Y, LAN Y Q, WANG X L, SU Z M, WANG R S. Assembly of a chiral bikitaite zeolite metal-organic framework based on the asymmetrical tetrahedral building blocks[J]. Cryst. Growth Des., 2008, 8: 2987

    33. [33]

      HU R F, ZHANG J, KANG Y, YAO Y G. A fluorescent Zn-benzotriazole 2D polymer with (6, 3) topology[J]. Inorg. Chem. Commun., 2005, 8: 828-830  doi: 10.1016/j.inoche.2005.06.017

    34. [34]

      LU J, ZHAO K, FANG Q R, XU J Q, YU J H, ZHANG X, BIE H Y, WANG T G. Synthesis and characterization of four novel supramolecular compounds based on metal zinc and cadmium[J]. Cryst. Growth Des., 2005, 5: 1091  doi: 10.1021/cg049637a

    35. [35]

      KAZANSKY L P, PRONIN Y E, ARKHIPUSHKIN I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface[J]. Corrosion Sci., 2014, 89: 21-29  doi: 10.1016/j.corsci.2014.07.055

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(9)
  • Abstract views(561)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return