Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles
- Corresponding author: Hang XU, xuhang@nankai.edu.cn Bin ZHAO, zhaobin@nankai.edu.cn
Citation:
Zelong LIANG, Shijia QIN, Pengfei GUO, Hang XU, Bin ZHAO. Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 165-173.
doi:
10.11862/CJIC.20240409
LIU K K, MENG Z, FANG Y, JIANG H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3: 100133
doi: 10.1016/j.esci.2023.100133
AN B, LI Z, SONG Y, ZHANG J Z, ZENG L Z, WANG C, LIN W B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol[J]. Nat. Catal., 2019, 2(8): 709-717
doi: 10.1038/s41929-019-0308-5
YANG Z W, CHEN J M, LIANG Z L, XIE W J, ZHAO B, HE L N. Anodic product-derived Bi-MOF as pre-catalyst for cathodic CO2 reduction: A novel strategy for paired electrolysis[J]. ChemCatChem, 2023, 15(2): e202201321
doi: 10.1002/cctc.202201321
ZHU Z H, ZHAO B H, HOU S L, JIANG X L, LIANG Z L, ZHANG B, ZHAO B. A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate[J]. Angew. Chem. —Int. Edit., 2021, 60(43): 23394-23402
doi: 10.1002/anie.202110387
HAN B, JIN Y C, CHEN B T, ZHOU W, YU B Q, WEI C Y, WANG H L, WANG K, CHEN Y L, CHEN B L, JIANG J Z. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis[J]. Angew. Chem. —Int. Edit., 2022, 61(1): e202114244
doi: 10.1002/anie.202114244
GU J, HSU C S, BAI L, CHEN H M, HU X L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094
doi: 10.1126/science.aaw7515
WANG Y R, HUANG, Q, HE C T, CHEN Y F, LIU J, SHEN F C, LAN Y Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nat. Commun., 2018, 9(1): 4466
doi: 10.1038/s41467-018-06938-z
ZHU Q G, YANG D X, LIU H Z, SUN X F, CHEN C J, BI J H, LIU J Y, WU H H, HAN B X. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction[J]. Angew. Chem. —Int. Edit., 2020, 59: 8896-8901
doi: 10.1002/anie.202001216
ZHONG M, TRAN K, MIN Y M, WANG C H, WANG Z Y, DINH C T, LUNA P D, YU Z Q, RASOULI A S, BRODERSEN P, SUN S, VOZNYY O, TAN C S, ASKERKA M, CHE F L, LIU M, SEIFITOKALDANI A, PANG Y J, LO S C, IP A, ULISSI Z, SARGENT E H. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. Nature, 2020, 581(7807): 178-183
doi: 10.1038/s41586-020-2242-8
AJMAL S, YASIN G, KUMAR A, TABISH M, IBRAHEEM S, SAMMED K A, MUSHTAQ M A, SAAD A, MO Z S, ZHAO W. A disquisition on CO2 electroreduction to C2H4: An engineering and design perspective looking beyond novel choosy catalyst materials[J]. Coord. Chem. Rev., 2023, 485: 215099
doi: 10.1016/j.ccr.2023.215099
XU Z K, PENG C, LUO G, YANG S T, YU P G, YAN S, SHAKOURI M, WANG Z Q, SHAM T K, ZHENG G F. High-rate CO2-to-CH4 electrosynthesis by undercoordinated Cu sites in alkaline-earth-metal perovskites with strong basicity[J]. Adv. Energy Mater., 2023, 13(19): 2204417
doi: 10.1002/aenm.202204417
YE R P, DING J, GONG W B, ARGYLE M D, ZHONG Q, WANG Y J, RUSSELL C K, XU Z H, RUSSELL A G, LI Q H, FAN M H, YAO Y G. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nat. Commun., 2019, 10(1): 5698
doi: 10.1038/s41467-019-13638-9
PATEL D M, KODGIRE P, DWIVEDI A H. Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review[J]. J. Clean Prod., 2020, 245: 118838
doi: 10.1016/j.jclepro.2019.118838
ZHU Z H, LIANG Z L, JIAO Z H, JIANG X L, XIE Y, XU H, ZHAO B. A facile strategy to obtain low-cost and high-performance gold-based catalysts from artificial electronic waste by [Zr48Ni6] nano-cages in MOFs for CO2 electroreduction to CO[J]. Angew. Chem. —Int. Edit., 2022, 61(49): e202214243
doi: 10.1002/anie.202214243
HAN L L, SONG S J, LIU M J, YAO S Y, LIANG Z X, CHENG H, REN Z H, LIU W, LIN R Q, QI G C, LIU X J, WU Q, LUO J, XIN H L L. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4[J]. J. Am. Chem. Soc., 2020, 142(29): 12563-12567
doi: 10.1021/jacs.9b12111
LI Q, FU J J, ZHU W L, CHEN Z Z, SHEN B, WU L H, XI Z, WANG T Y, LU G, ZHU J J, SUN S H. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. J. Am. Chem. Soc., 2017, 139(12): 4290-4293
doi: 10.1021/jacs.7b00261
MENG Z Y, QIU Z M, SHI Y X, WANG S X, ZHANG G X, PI Y C, PANG H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3: 100092
doi: 10.1016/j.esci.2023.100092
HU X S, LIU X Y, HU X, ZHAO C Y, GUAN Q X, LI W. Hybrid catalyst coupling Zn single atoms and CuNx clusters for synergetic catalytic reduction of CO2[J]. Adv. Funct. Mater., 2023, 33(16): 2214215
doi: 10.1002/adfm.202214215
WANG R, LI C, WU J X, DU W, JIANG T, YANG Y Z, YANG X J, GONG M. Coordination-promoted bio-catechol electro-reforming toward sustainable polymer production[J]. J. Am. Chem. Soc., 2023, 145(33): 18516-18528
doi: 10.1021/jacs.3c05120
GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71
doi: 10.1038/nature16455
YAN W Q, MO Q J, HE Q T, LI X P, XUE Z Q, LU Y L, CHEN J, ZHENG K, FAN Y N, LI G Q, SU C Y. Anion modulation of Ag- imidazole cuboctahedral cage microenvironments for efficient electrocatalytic CO2 reduction[J]. Angew. Chem. —Int. Edit., 2024: e202406564
LI B, LEI Q J, QIN T, ZHANG X X, ZHAO D S, WANG F, LI W Q, ZHANG Z G, FAN L M. Anion exchange strategy to improve electrocatalytic hydrogen evolution performances in cationic metal-organic frameworks[J]. CrystEngComm, 2021, 23(47): 8260-8264
doi: 10.1039/D1CE01210J
LIANG Z L, ZHANG Z H, JIAO Y E, XU H, HU H S, ZHAO B. Highly stable 72-nuclearity nanocages for efficient synthesis of aryl nitriles via Ni/Cu synergistic catalysis[J]. J. Am. Chem. Soc., 2024, 146(15): 10776-10784
doi: 10.1021/jacs.4c00885
ZHAO J, JIAO Z H, HOU S L, MA Y, ZHAO B. Anchoring Ag into nitro-functionalized metal-organic frameworks: Effectively catalyzing cycloaddition of CO2 with propargylic alcohols under mild conditions[J]. ACS Appl. Mater. Interfaces, 2021, 13(38): 45558-45565
doi: 10.1021/acsami.1c13438
MAURIN A, ROBERT M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective efficient CO2-to-CO conversion in water[J]. J. Am. Chem. Soc., 2016, 138(8): 2492-2495
doi: 10.1021/jacs.5b12652
POATER J, GIMFERRER M, POATER A. Covalent and ionic capacity of MOFs to sorb small gas molecules[J]. Inorg. Chem., 2018, 57(12): 6981-6990
doi: 10.1021/acs.inorgchem.8b00670
YAO S, JIANG S Y, WANG B F, YIN H Q, XIANG X Y, TANG Z, AN C H, LU T B, ZHANG Z M. Polyoxometalate confined synthesis of BiVO4 nanocluster for urea production with remarkable O2/N2 tolerance[J]. Angew. Chem. —Int. Edit. 2024: e202418637.
FU S S, YAO S, GUO S, GUO G C, YUAN W J, LU T B, ZHANG Z M. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF[J]. J. Am. Chem. Soc., 2021, 143(49): 20792-20801
doi: 10.1021/jacs.1c08908
MAMAGHANI A H, LIU J W, ZHANG Z, GAO R, WU Y X, LI H B, FENG M, CHEN Z W. Promises of MOF-based and MOF-derived materials for electrocatalytic CO2 reduction[J]. Adv. Energy Mater., 2024, 14: 2402278
doi: 10.1002/aenm.202402278
HU S, QIAO P Z, YI X L, LEI Y M, HU H L, YE J H, WANG D F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride[J]. Angew. Chem. —Int. Edit., 2023, 62(26): e202304585
doi: 10.1002/anie.202304585
DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009, 42: 339-341
doi: 10.1107/S0021889808042726
SHAO K Z, ZHAO Y H, XING Y, LAN Y Q, WANG X L, SU Z M, WANG R S. Assembly of a chiral bikitaite zeolite metal-organic framework based on the asymmetrical tetrahedral building blocks[J]. Cryst. Growth Des., 2008, 8: 2987
HU R F, ZHANG J, KANG Y, YAO Y G. A fluorescent Zn-benzotriazole 2D polymer with (6, 3) topology[J]. Inorg. Chem. Commun., 2005, 8: 828-830
doi: 10.1016/j.inoche.2005.06.017
LU J, ZHAO K, FANG Q R, XU J Q, YU J H, ZHANG X, BIE H Y, WANG T G. Synthesis and characterization of four novel supramolecular compounds based on metal zinc and cadmium[J]. Cryst. Growth Des., 2005, 5: 1091
doi: 10.1021/cg049637a
KAZANSKY L P, PRONIN Y E, ARKHIPUSHKIN I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface[J]. Corrosion Sci., 2014, 89: 21-29
doi: 10.1016/j.corsci.2014.07.055
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388