Citation: Linfang ZHANG, Wenzhu YIN, Gui YIN. A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405 shu

A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells

  • Corresponding author: Gui YIN, yingui@nju.edu.cn
  • Received Date: 12 November 2024
    Revised Date: 16 December 2024

Figures(9)

  • Using 2-dicyanomethylene-3-cyano-4, 5, 5-trimethyl-2, 5-dihydrofuran (TCF) as a near-infrared fluorescent chromophore, we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2, 4-dinitrophenyl ether as the recognized site for H2S. The probe TCF-NS displayed a rapid-response fluorescent against H2S with high sensitivity and selection but had no significant fluorescence response to other biothiols. Furthermore, TCF-NS was applied to sense H2S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
  • 加载中
    1. [1]

      WANG L Y, ZHANG C F, TANG H, CAO D R. A novel chromophore reaction-based pyrrolopyrrole aza-BODIPY fluorescent probe for H2S detection and its application in food spoilage[J]. Food Chem., 2023,427136591. doi: 10.1016/j.foodchem.2023.136591

    2. [2]

      GONG S Y, ZHENG Z P, GUAN X G, FENG S, FENG X G, FENG S M, FENG G Q. Near-infrared mitochondria-targetable fluorescent probe for high-contrast bioimaging of H2S[J]. Anal. Chem., 2021,93(14):5700-5708. doi: 10.1021/acs.analchem.0c04639

    3. [3]

      RAJALAKSHMI K, MUTHUSAMY S, LEE H J, KANNAN P, ZHU D W, SONG J W, NAM Y S, HEO D N, KWON I, LUO Z B, XU Y G. Dual-channel fluorescent probe for discriminative detection of H2S and N2H4: Exploring sensing mechanism and real-time applications[J]. J. Hazard. Mater., 2024,465133036. doi: 10.1016/j.jhazmat.2023.133036

    4. [4]

      CHEN S T, LIU T, YUAN X M, ZHOU L Y. Construction of an effective near-infrared fluorescence "turn-on" probe for hydrogen sulfide detection and imaging in living inflammatory cell and zebrafish models[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,323124863. doi: 10.1016/j.saa.2024.124863

    5. [5]

      SHANG H Y, DONG X, ZHANG X F, ZHANG A P, DU J W. Electrocatalytic-induced electrochemical sensor based on the heterojunction Cu-Ni/Ni(OH)2 for the detection of hydrogen sulfide[J]. ACS Appl. Nano Mater., 2023,6(24):23576-23584. doi: 10.1021/acsanm.3c05075

    6. [6]

      ZHANG H L, LI S Y, ZHENG H P, HAN Z Z, LIN B, WANG Y Y, GUO X J, ZHOU T G, ZHANG H B, WU J J, ZHANG H, TANG J L. A visual color response test paper for the detection of hydrogen sulfide gas in the air[J]. Molecules, 2023,28(13)5044. doi: 10.3390/molecules28135044

    7. [7]

      XIAO X, SHEN Y Z, ZHOU X, SUN B G, WANG Y, CAO J X. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices[J]. Coord. Chem. Rev., 2023,480215012. doi: 10.1016/j.ccr.2023.215012

    8. [8]

      BU D D, WANG Y Y, WU N, FENG W, WEI D H, LI Z X, YU M M. A mitochondrial-targeted ratiometric probe for detecting intracellular H2S with high photostability[J]. Chin. Chem. Lett., 2021,32(5):1799-1802. doi: 10.1016/j.cclet.2020.12.044

    9. [9]

      HUANG J J, ZOU X R, LIU X E, RAN H Y, PANG M L, ZHAO L L, WANG P, CHEN J, CHEN M Z, PENG Y B. Construction of a highly specific fluorescence "turn-on" probe for H2S detection and imaging in drug-induced live cells, zebrafish and mice arthritis models[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,323124928. doi: 10.1016/j.saa.2024.124928

    10. [10]

      CAI W J, XIN T, TU Y Y, SUN L L, LIAO G M, LIU G, FAN C B. A near-infrared turn-on fluorescent probe for the detection of hydrogen sulfide in water samples and food spoilage[J]. Anal. Chim. Acta, 2024,1320342992. doi: 10.1016/j.aca.2024.342992

    11. [11]

      YANG Y X, CHEN L, HU X L, ZHONG K L, LI S D, YAN X M, ZHANG J L, TANG L J. Synthesis of a turn-on fluorescent probe for hydrogen sulfide and its application in red wine and living cells[J]. Chin. J. Org. Chem., 2023,43(1):308-312. doi: 10.6023/cjoc202207011

    12. [12]

      ZHAO X J, JIANG Y R, LI Y T, YANG B Q, LIU C, LIU Z H. A novel "turn-on" mitochondria-targeting near-infrared fluorescent probe for determination and bioimaging cellular hydrogen sulfide[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019,212:71-77. doi: 10.1016/j.saa.2018.12.046

    13. [13]

      MAO Y Y, LI Y B, WANG H J, SUN Y X, YU S L, NIU H Y, YE T Q, GUO L H, LI L, WANG J B. Near-infrared fluorescent probe based on the regulatory dye pKa for imaging of H2S in rice roots and living cells[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,321124762. doi: 10.1016/j.saa.2024.124762

    14. [14]

      FANG W L, HE S, GUO X F, WANG H. A novel near infrared probe with large Stokes shift for detection of H2S in living cells[J]. Sens. Actuator B-Chem., 2023,375132961. doi: 10.1016/j.snb.2022.132961

    15. [15]

      SONG J T, YUAN Y H, ZHU Y J, WANG Y Z, TIAN M Z, FENG F. Research progress of near-infrared fluorescent probes for hydrogen sulfide[J]. Spectrosc. Spectr. Anal., 2022,42(11):3321-3329.

    16. [16]

      ZHONG K L, CHEN L, PAN Y X, YAN X M, HOU S H, TANG Y W, GAO X, LI J R, TANG L J. A colorimetric and near-infrared fluorescent probe for detection of hydrogen sulfide and its real multiple applications[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019,221117135. doi: 10.1016/j.saa.2019.117135

    17. [17]

      LI X H, YAN J L, WU W N, ZHAO X L, WANG Y, FAN Y C, XU Z H. A dual-response fluorescent probe for SO2 and viscosity and imaging application in lysosomes and zebrafish[J]. Microchem. J., 2022,181107653. doi: 10.1016/j.microc.2022.107653

    18. [18]

      LINGHU Y N, LIU M, WANG M, LUO Y, LAN W S, WANG J Y. A near-infrared hepatocyte-targeting probe based on tricyanofuran to detect cysteine in vivo: Design, synthesis and evaluation[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,322124802. doi: 10.1016/j.saa.2024.124802

    19. [19]

      YAN K C, GARDINER J E, SEDGWICK A C, THET N, HEYLEN R A, JAMES T D, JENKINS A T A, HE X P. A TCF-based fluorescent probe to determine nitroreductase (NTR) activity for a broad spectrum of bacterial species[J]. Chem. Commun., 2023,59(53):8278-8281. doi: 10.1039/D3CC00462G

    20. [20]

      LI D P, HAN X J, YAN Z Q, CUI Y, MIAO J Y, ZHAO B X. A farred ratiometric fluorescent probe for SO2 derivatives based on the ESIPT enhanced FRET platform with improved performance[J]. Dyes Pigments., 2018,151:95-101. doi: 10.1016/j.dyepig.2017.12.056

    21. [21]

      WANG R, YU F B, CHEN L X, CHEN H, WANG L J, ZHANG W W. A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells[J]. Chem. Commun., 2012,48(96):11757-11759. doi: 10.1039/c2cc36088h

    22. [22]

      WANG X Y, MIN J, WANG W J, WANG Y, YIN G, WANG R Y. A novel porphyrin-based near-infrared fluorescent probe for hypochlorite detection and its application in vitro and in vivo[J]. Analyst, 2018,143(11):2641-2647. doi: 10.1039/C8AN00586A

    23. [23]

      FOSNACHT K G, PLUTH M D. Activity-based fluorescent probes for hydrogen sulfide and related reactive sulfur species[J]. Chem. Rev., 2024,124(7):4124-4257. doi: 10.1021/acs.chemrev.3c00683

  • 加载中
    1. [1]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    2. [2]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    3. [3]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    4. [4]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    5. [5]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    8. [8]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    9. [9]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    13. [13]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    14. [14]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    15. [15]

      Ying ZhangChuang ShenJiaxu ZhangQi ShenFei XuShengheng WangJiuyi HuFaisal SaleemFeng HuangZhimin Luo . Ultrasmall PtCu nanosheets as a broadband phototheranostic agent in near-infrared biowindow. Chinese Chemical Letters, 2025, 36(6): 111059-. doi: 10.1016/j.cclet.2025.111059

    16. [16]

      Zhoupeng ZhengShengyi GongQianhua LiShiya ZhangGuoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191

    17. [17]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    18. [18]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    19. [19]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    20. [20]

      Keliang LiGuoqiang DongShanchao WuChunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280

Metrics
  • PDF Downloads(1)
  • Abstract views(237)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return