Citation: Jie WU, Zhihong LUO, Xiaoli CHEN, Fangfang XIONG, Li CHEN, Biao ZHANG, Bin SHI, Quansheng OUYANG, Jiaojing SHAO. Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400 shu

Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials

  • Corresponding author: Jiaojing SHAO, shaojiao_jing@163.com
  • Received Date: 7 November 2024
    Revised Date: 16 March 2025

Figures(8)

  • LiNi0.5Mn1.5O4 (LNMO) was prepared by a high-temperature solid phase method, and then AlPO4 (AP) was coated on the polyhedral LNMO surface by the wet chemical method. The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1% mass ratio of AlPO4 and LNMO had better electrochemical performance; after 450 cycles at 1C, its discharge specific capacity maintained 108.78 mAh·g-1, while that of the LNMO|Li cell was only 86.04 mAh·g-1. Especially at the high rates of 5C and 10C, the electrochemical properties of the former were far superior to the latter. This was attributed to the fact that the AP coating made the surface of LNMO in con- tact with the electrolyte more stable, effectively promoted the Li+ transport, and reduced the polarization voltage of the electrode.
  • 加载中
    1. [1]

      CHEN Z J, LI Z H, PENG Y X, WANG T, ZHONG H B, HU C Y, ZHAO R R. Crystalline geometry engineering towards high-energy spinel cathode for lithium-ion batteries[J]. J. Alloy. Compd., 2022,919165798. doi: 10.1016/j.jallcom.2022.165798

    2. [2]

      LIU J J, YUAN M L, LI Z, XIE S, WANG T X, YAN J Q, PENG J. Improving the electrochemical performance of single crystal LiNi0.5Mn1.5O4 cathode materials by Y-Ti doping and unannealing pro-cess[J]. Ceram. Int., 2022,48(24):36490-36499. doi: 10.1016/j.ceramint.2022.08.209

    3. [3]

      ZHOU M X, ZHOU W H, LONG X, ZHU S K, XU P, OUYANG Q S, SHI B, SHAO J J. A 2D montmorillonite-carbon nanotube intercon-nected porous network that prevents polysulfide shuttling[J]. New Carbon Mater., 2023,38(6):1070-1079. doi: 10.1016/S1872-5805(23)60783-8

    4. [4]

      DUAN J D, LIU Y L, TANG X, LI J, GUO J Q, ZENG M, WANG L G. Improve electrochemical performance of spinel LiNi0.5Mn1.5O4 via sur-face modified by Li1.2Ni0.2Mn0.6O2 layered materials[J]. J. Mater. Sci.-Mater. Electron., 2020,31(5):4336-4344. doi: 10.1007/s10854-020-02991-x

    5. [5]

      FU T J, LU D, YAO Z Q, LI Y J, LUO C Y, YANG T Y, LIU S K, CHEN Y F, GUO Q P, ZHENG C M, SUN W W. Advances in modifi-cation methods and the prospects of high-voltage spinel LiNi0.5Mn1.5O4-A review[J]. J. Mater. Chem. A, 2023,11(26):13889-13915. doi: 10.1039/D3TA01777J

    6. [6]

      HAN Y, JIANG Y S, YU F D, DENG L, KE W, ZHANG S J, QUE L F, WU B, DING F, ZHAO L, WANG Z B. Addressing Mn dissolution in high-voltage LiNi0.5Mn1.5O4 cathodes via interface phase modulation[J]. Adv. Funct. Mater., 2022,32(41)2207285. doi: 10.1002/adfm.202207285

    7. [7]

      MOU J R, DENG Y L, HE L H, ZHENG Q J, JIANG N, LIN D M. Critical roles of semi-conductive LaFeO 3 coating in enhancing cycling stability and rate capability of 5 Ⅴ LiNi0.5Mn1.5O4 cathode materials[J]. Electrochim. Acta, 2018,260:101-111. doi: 10.1016/j.electacta.2017.11.059

    8. [8]

      JIAO C M, WNG L, ZUO Y X, NI P, LIANG G C. Solid-state synthe-sis of spherical hierarchical LiNi0.5Mn1.5O4 through an improved calci-nation method and its cyclic performance for 5 Ⅴ lithium ion batteries[J]. Solid State Ion., 2015,277:50-56. doi: 10.1016/j.ssi.2015.04.007

    9. [9]

      CHANG L J, CAO S Y, LUO S H, LI K, BI X L, WEI A L, LIU J N. Effect of different calcination temperatures on the high-temperature properties of AlPO4-coated modified spinel LiNi0.5Mn1.5O4 material[J]. Energy Technol., 2021,9(11)2100637. doi: 10.1002/ente.202100637

    10. [10]

      HALLOT M, CAJA-MUNOZ B, LEVIEL C, LEBEDEV O I, RETOUX R, AVILA J, ROUSSEL P, ASENSIO M C, LETHIEN C. Atomic layer deposition of a nanometer-thick Li3PO4 protective layer on LiNi0.5Mn1.5O4 films: Dream or reality for long-term cycling?[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15761-15773. doi: 10.1021/acsami.0c21961

    11. [11]

      HE J R, MELINTE G, DARMA M S D, HUA W B, DAS C, SCHOKEL A, ETTER M, HANSEN A L, MEREACRE L, GECKLE U, BERGFELDT T, SUN Z P, KNAPP M, EHRENBERG H, MAIBACH J. Surface structure evolution and its impact on the elec-trochemical performances of aqueous-processed high-voltage spinel LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries[J]. Adv. Funct. Mater., 2022,32(46)2207937. doi: 10.1002/adfm.202207937

    12. [12]

      LIANG W B, WANG P, DING H, WANG B, LI S Y. Granularity control enables high stability and elevated-temperature properties of micron-sized single-crystal LiNi0.5Mn1.5O4 cathodes at high voltage[J]. J. Materiomics, 2021,7(5):1049-1060. doi: 10.1016/j.jmat.2021.02.003

    13. [13]

      QURESHI Z A, TARIQ H A, HAFIZ H M, SHAKOOR R A, ALQARADAWI S, KAHRAMAN R. Influence of graphene wrapped-cerium oxide coating on spherical LiNi0.5Mn1.5O4 particles as cath-ode in high-voltage lithium-ion batteries[J]. J. Alloy. Compd., 2022,920165989. doi: 10.1016/j.jallcom.2022.165989

    14. [14]

      LIU J J, YUAN M L, LI Z, WANG L H, YAN J Q, PENG J, OU S W, XU J Y. Enhancing structure and cycling stability of single crystal LiNi0.5Mn1.5O4 cathode via multifunctional MXene surface modifica-tion[J]. J. Energy Storage, 2024,76109785. doi: 10.1016/j.est.2023.109785

    15. [15]

      CHANG Q, WANG F, ZUO Z C, HE F, ZHAO Y, WANG F Y, LI Y L. High voltage-stabilized graphdiyne cathode interface[J]. Small, 2021,17(38)2102066. doi: 10.1002/smll.202102066

    16. [16]

      SANDARUWAN R D L, CONG L N, MA L P, MA S C, WANG H Y. Tackling the interfacial issues of spinel LiNi0.5Mn1.5O4 by room-tem-perature spontaneous dediazonation reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13264-13272. doi: 10.1021/acsami.1c00204

    17. [17]

      LV S S, LI M Y, LUO X Y, CHENG J P, LI Z C. High-voltage LiNi0.5Mn1.5O4 thin film cathodes stabilized by LiPON solid electro-lyte coating to enhance cyclic stability and rate capability[J]. J. Alloy. Compd., 2020,815151636. doi: 10.1016/j.jallcom.2019.07.348

    18. [18]

      YI T F, LI Y M, Li X Y, PAN J J, ZHANG Q Y, ZHU Y R. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery[J]. Sci. Bull., 2017,62(14):1004-1010. doi: 10.1016/j.scib.2017.07.003

    19. [19]

      ZHU Y R, YI T F, ZHU R S, ZHOU A N. Increased cycling stability of Li 4Ti5O12-coated LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries[J]. Ceram. Int., 2013,39(3):3087-3094. doi: 10.1016/j.ceramint.2012.09.088

    20. [20]

      ZENG H N, HE J, FANG D Y, LIANG Y H, ZHAO R R, CAI Y P, LU D S. Nano-sized AlPO 4 coating layer on graphite powder to improve the electrochemical properties of high-voltage graphite/LiNi0.5Mn1.5O4 Li-ion cells[J]. Energy Technol., 2019,7(9)1801078. doi: 10.1002/ente.201801078

    21. [21]

      WU Q, YIN Y F, SUN S W, ZHANG X P, WAN N, BAI Y. Novel AlF 3 surface modified spinel LiNi0.5Mn1.5O4 for lithium-ion batteries: Performance characterization and mechanism exploration[J]. Electro-chim. Acta, 2015,158:73-80. doi: 10.1016/j.electacta.2015.01.145

    22. [22]

      HWANG T, LEE J K, MUN J, CHOI W. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. J. Power Sources, 2016,322:40-48. doi: 10.1016/j.jpowsour.2016.04.118

    23. [23]

      GAO C, LIU H P, BI S F, FAN S S, MENG X H, LI Q Y, LUO C X. Insight into the effect of graphene coating on cycling stability of LiNi0.5Mn1.5O4: Integration of structure-stability and surface-stability[J]. J. Materiomics, 2020,6(4):712-722. doi: 10.1016/j.jmat.2020.05.010

    24. [24]

      GAO C, LIU H P, BI S F, FAN S S, LIU Q, LI H L, CAO L X, LUO C X. Insight into the high-temperature cycling stability of a micro-nanostructured LiNi0.5Mn1.5O4/graphene composite cathode for high-voltage lithium-ion batteries[J]. J. Phys. Chem. C, 2020,124(35):18847-18858. doi: 10.1021/acs.jpcc.0c02933

    25. [25]

      QURESHI Z A, TARIQ H A, SHAKOOR R A, KAHRAMAN R, AQARADAWI S. Impact of coatings on the electrochemical perfor-mance of LiNi0.5Mn1.5O4 cathode materials: A focused review[J]. Ceram. Int., 2022,48(6):7374-7392. doi: 10.1016/j.ceramint.2021.12.118

    26. [26]

      WEI A J, LI W, CHANG Q, BAI X, HE R, ZHANG L H, LIU Z F, WANG Y J. Effect of Mg2+/F-co-doping on electrochemical perfor-mance of LiNi0.5Mn1.5O4 for 5 Ⅴ lithium-ion batteries[J]. Electro-chim. Acta, 2019,323134692. doi: 10.1016/j.electacta.2019.134692

    27. [27]

      SUN P, MA Y, ZHAI T Y, LI H Q. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method[J]. Electrochim. Acta, 2016,191:237-246. doi: 10.1016/j.electacta.2016.01.087

    28. [28]

      YI T F, XIE Y, YE M F, JIANG L J, ZHU R S, ZHU Y R. Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 Ⅴ lithium-ion batteries[J]. Ionics, 2011,17(5):383-389. doi: 10.1007/s11581-011-0550-6

    29. [29]

      PARK S B, EOM W S, CHO W I, JANG H. Electrochemical proper-ties of LiNi0.5Mn1.5O4 cathode after Cr doping[J]. J. Power Sources, 2006,159(1):679-684. doi: 10.1016/j.jpowsour.2005.10.099

    30. [30]

      WANG H L, XIA H, LAI M O, LU L. Enhancements of rate capabili-ty and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping[J]. Electrochem. Commun., 2009,11(7):1539-1542. doi: 10.1016/j.elecom.2009.05.054

    31. [31]

      ZONG B, DENG Z Y, YAN S H, LANG Y Q, GONG J J, GUO J L, WANG L, LIANG G C. Effects of Si doping on structural and electro-chemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. Powder Technol., 2020,364:725-737. doi: 10.1016/j.powtec.2020.02.033

    32. [32]

      YI T F, HAN X, CHEN B, ZHU Y R, XIE Y. Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery[J]. J. Alloy. Compd., 2017,703:103-113. doi: 10.1016/j.jallcom.2017.01.342

    33. [33]

      ONEY G, OLCHOWKA J, DEMORTIERE A, WEILL F, CROGUENNEC L. Molten salt synthesis of multifaceted pure-phase spinel LiNi0.5Mn1.5O4 platelets[J]. ACS Appl. Energy Mater., 2023,6(15):8189-8196. doi: 10.1021/acsaem.3c01328

    34. [34]

      DENG S X, WANG B Q, YUAN Y F, LI X, SUN Q, DOYLE-DAVIS K, BANIS M N, LIANG J N, ZHAO Y, LI J J, LI R Y, SHAM T K, SHAHBAZIAN-YASSAR R, WANG H, CAI M, LU J, SUN X L. Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes[J]. Nano Energy, 2019,65103988. doi: 10.1016/j.nanoen.2019.103988

    35. [35]

      WEI L Y, TAO J M, YANG Y M, FAN X Y, RAN X X, LI J X, LIN Y B, HUANG Z G. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries[J]. Chem. Eng. J., 2020,384123268. doi: 10.1016/j.cej.2019.123268

    36. [36]

      ZHANG L Q, WANG H, WANG X, WEN J F, REN Y R. Improved electrochemical performance of high voltage spinel LiNi0.5Mn1.5O4 achieved by a dual electronic and ionic surface modification strategy[J]. Solid State Ion., 2022,387116062. doi: 10.1016/j.ssi.2022.116062

    37. [37]

      TSAI Y D, SHIH J Y, LI Y J J, HUNG T F, HSU L F, RAMARAJ S K, JOSE R, KARUPPIAH C, YANG C C. Effect of single-walled car-bon nanotube sub-carbon additives and graphene oxide coating for enhancing the 5 Ⅴ LiNi0.5Mn1.5O4 cathode material performance in lithium-ion batteries[J]. ACS Sustain. Chem. Eng., 2022,10(50):16709-16724. doi: 10.1021/acssuschemeng.2c04808

    38. [38]

      LI L, ZHAO R, XU T H, WANG D D, PAN D, ZHANG K, YU C Y, LU X, HE G J, BAI Y. Stabilizing a high-voltage LiNi0.5Mn1.5O4 cath-ode towards all solid state batteries: A Li-Al-Ti-P-O solid electrolyte nano-shell with a host material[J]. Nanoscale, 2019,11(18):8967-8977. doi: 10.1039/C9NR01655D

    39. [39]

      ZHU R N, ZHANG S J, GUO Q X, ZHOU Y, LI J T, WANG P F, GONG Z L. More than just a protection layer: Inducing chemical interaction between Li 3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials[J]. Electrochim. Acta, 2020,342136074. doi: 10.1016/j.electacta.2020.136074

    40. [40]

      TARIQ H A, ABRAHAM J J, QUDDUS A A, ALQARADAWI S, KAHRAMAN R, SHAKOOR R A. Graphene wrapped Y2O3 coated LiNi0.5Mn1.5O4 quasi-spheres as novel cathode materials for lithium-ion batteries[J]. J. Mater. Res. Technol., 2021,14:1377-1389. doi: 10.1016/j.jmrt.2021.07.038

    41. [41]

      DENG S X, XIAO B W, WANG B Q, LI X, KALIYAPPAN K, ZHAO Y, LUSHINGTON A, LI R Y, SHAM T K, WANG H, SUN X L. New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes[J]. Nano Energy, 2017,38:19-27. doi: 10.1016/j.nanoen.2017.05.007

    42. [42]

      MO M Y, HUI K S, HONG X T, GUO J S, YE C C, LI A J, HU N Q, HUANG Z Z, JIANG J H, LIANG J Z, CHEN H Y. Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5 Ⅴ lithium ion batteries[J]. Appl. Surf. Sci., 2014,290:412-418. doi: 10.1016/j.apsusc.2013.11.094

    43. [43]

      TANG X N, XIA S, LEI J, YANG X F, LUO Q Y, LIU J N, XUE A. Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion bat-teries[J]. Chinese. J. Inorg. Chem., 2024,40(9):1671-1678.  

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    13. [13]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(0)
  • Abstract views(72)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return