Citation: Hailang JIA, Pengcheng JI, Hongcheng LI. Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398 shu

Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution

  • Corresponding author: Hailang JIA, jiahailang85@126.com
  • Received Date: 3 November 2024
    Revised Date: 26 June 2025

Figures(7)

  • We used ZIF-8 as a sacrificial template and utilized its inherent polyhedral spatial structure to suppress the stacking and aggregation behavior of nanoparticle catalysts. At the same time, we further introduced transition metal nickel (Ni) element to doping ruthenium dioxide (RuO2) to optimize the electronic structure of the material and improve the intrinsic activity of active sites. As a result, the high-performance oxygen evolution electrocatalyst (Ni-RuO2) with a particle size of 8-10 nm was prepared. The results indicated that Ni-RuO2 had excellent oxygen evolution reaction (OER) catalytic performance, surpassing commercial RuO2. When Ni-RuO2 was used as the anode for overall water splitting testing, only a decomposition voltage of 1.476 V was required at a current density of 10 mA·cm-2.
  • 加载中
    1. [1]

      GEWIRTH A A, VARNELL J A, DIASCRO A M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems[J]. Chem. Rev., 2018,118:2313-2339.

    2. [2]

      ZHAO Z Q, CHEN H, ZHANG W Y, YI S, CHEN H L, SU Z, NIU B, ZHANG Y Y, LONG D H. Defect engineering in carbon materials for electrochemical energy storage and catalytic conversion[J]. Mater. Adv., 2023,4:835-867.

    3. [3]

      IQBAL M F, IDREES M, IMRAN M, RAZAQ A, ZHU G M, ZHANG J, MUHAMMAD Z, ZHANG M. Enhancement of the characteristics and HER activity of molybdenum carbide nanosheets for hydrogen evolution reaction[J]. Sustain. Energ. Fuels, 2024,8:2299-2308.

    4. [4]

      WU F, JIAO Y H, GE J L, ZHU Y Y, FENG C, WU Z, LV C P. Rapid synthesis of sea urchin-like Ni(OH)2@Ni(Fe)OOH electrocatalysts for the oxygen evolution reaction[J]. New J. Chem., 2024,48:16380-16386.

    5. [5]

      WANG Q, YE M Z, HE G Y, CHEN H Q. Sulfur vacancies modified CuCo2S4 popcorn-like nanoballs loaded reduced graphene oxide as bifunctional electrocatalysts for electrochemical water splitting[J]. J. Alloy. Compd., 2024,1009176948.

    6. [6]

      LUAN X Y, GUO L F, LI H D, XIAO W P, XU G R, CHEN D H, LI C X, DU Y M, WU Z X, WANG L. Ultrafast quasi-solid-state microwave construction of spongy cobalt-molybdenum phosphide for hydrogen production over wide pH range[J]. Small, 2024,202404830.

    7. [7]

      PAN J T, ZHENG D W, XU G Y, GUO T, DING Y G, LIU D. Ion exchange engineering of S, Cu co-doped cobalt phosphide toward efficient electrochemical hydrogen evolution[J]. Fuel, 2024,378132954.

    8. [8]

      LIN C C, ZHANG Q, HAN P, WANG X Y, ZUO X Q, YANG Q, CHEN D M, LI G. Regulation of electrons between Ru and VN for high performance HER of low-level Ru doping in vanadium-nitrogen doped carbon catalysts[J]. Surf. Interfaces, 2024,51104544.

    9. [9]

      TENG Y, JI P C, JIA H L. FeNi-LDH coated with orange-peel carbon aerogel for oxygen evolution reaction[J]. ChemSusChem, 2024,18e202401276.

    10. [10]

      LI Y Q, CHEN J Y, WANG Z A, CHEN S R. 3D hierarchical carbon-supported ultrafine Ru nanoparticles for pH universal hydrogen evolution reactions[J]. ACS Appl. Nano Mater., 2024,77555.

    11. [11]

      LI N, MAO L J, FU Y T, WANG H R, SHEN Y C, ZHOU X M, LI Q P, QIAN J J. Ru-anchoring Co-MOF-derived porous Ru-Co3O4 nanomaterials for enhanced oxygen evolution activity and structural stability[J]. Inorg. Chem. Front., 2024,11:8139-8145.

    12. [12]

      AN B, LI X Q, LIN Y, SHANG F F, HE H J, CAI H R, ZENG X X, WANG W T, YANG S C, WANG B. Strontium doping RuO2 electrocatalyst with abundant oxygen vacancies for boosting OER performance[J]. Inorg. Chem. Front., 2024,11:8935-8944.

    13. [13]

      YI H, ZHANG X, AI Z, SONG S X, AN Q. Hollow nanowire constructed by NiCo doped RuO2 nanoparticles for robust hydrogen evolution at high-current-density[J]. ChemSusChem, 2022,15e202201532.

    14. [14]

      XU F F, LIU X, ZHANG L L, GUO M X, LI M Z, DING X, ZHANG L X. Revealing and optimizing the dialectical relationship between NOR and OER: Cation vacancy engineering enables RuO2 with unanticipated high electrochemical nitrogen oxidation performance[J]. Adv. Energy Mater., 2023,132300615.

    15. [15]

      HUANG J, HU B, MENG J, MENG T, LIU W, GUAN Y, JIN L, ZHANG X. Highly efficient sustainable strategies toward carbon-neutral energy production[J]. Energy Environ. Sci., 2024,17:1007-1045.

    16. [16]

      KWON I S, DEBELA T T, KWAK I H, PARK Y C, SEO J, SHIM J Y, YOO S J, KIM J G, PARK J, KANG H S. Ruthenium nanoparticles on cobalt-doped 1T' phase MoS2 nanosheets for overall water splitting[J]. Small, 2020,162000081.

    17. [17]

      HAO Y R, XUE H, SUN J, GUO N K, SONG T S, SUN J W, WANG Q. Tuning the electronic structure of CoP embedded in N-doped porous carbon nanocubes via Ru doping for efficient hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2021,13:56035-56044.

    18. [18]

      WANG H S, ABRUÑA H D. Comparative study of Ru-transition metal alloys and oxides as oxygen evolution reaction electrocatalysts in alkaline media[J]. ACS Appl. Energ. Mater., 2022,5:11241-11253.

    19. [19]

      CHOU C H, YEH C H, CHEN P L, LIN K H, WU C Y, YAN Z C, HSIAO P H, CHEN C Y. Reducing hole-injection hurdles of OER electrocatalysts derived from Ru-doped FeNi metal-organic frameworks anchored with FeOOH[J]. J. Mater. Chem. A, 2024,12:29526-29537.

    20. [20]

      WANG M T, JIAN J, WANG Z, XUE X X, NIE P, CHANG L M. Self-supporting Ru3+ doped copper phosphate with Pt/C-like hydrogen evolution reaction activity[J]. J. Mater. Chem. C, 2024,12:17128-17134.

    21. [21]

      ESCALERA-LÓPEZ D, CZIOSKA S, GEPPERT J, BOUBNOV A, RÖSE P, SARAÇI E, KREWER U, GRUNWALDT J D, CHEREVKO S. Phase- and surface composition-dependent electrochemical stability of Ir-Ru nanoparticles during oxygen evolution reaction[J]. ACS Catal., 2021,11:9300-9316.

    22. [22]

      DING J Y, PENG Z M, WANG Z W, ZENG C H, FENG Y H, YANG M S, HU G Z, LUO J, LIU X J. Phosphorus-tungsten dual-doping boosts acidic overall seawater splitting performance over RuOx nanocrystals[J]. J. Mater. Chem. A, 2024,12:28023-28031.

    23. [23]

      TAO Z H, LV N, ZHAO H Y, LUO X, LI Z L, YU J, CHEN L, LIU X P, MU S C. Dual active site-mediated Ir single-atom-doped RuO2 catalysts for highly efficient and stable water splitting[J]. Chem. Sci., 2024,15:16796-16803.

    24. [24]

      JI P C, TENG Y, LI H C, GUAN M Y, JIA H L. Honeycomb-like hollow carbon loaded with ruthenium nanoparticles as high-performance HER electrocatalysts[J]. Sustain. Energ. Fuels, 2024,8:82-89.

    25. [25]

      REN Y M, XU Y X. Three-dimensional graphene/metal-organic framework composites for electrochemical energy storage and conversion[J]. Chem. Commun., 2023,59:6475-6494.

    26. [26]

      WU Z Y, CHEN F Y, LI B Y, YU S W, FINFROCK Y Z, MEIRA D M, YAN Q Q, ZHU P, CHEN M X, SONG T W, YIN Z Y, LIANG H W, ZHANG S, WANG G F, WANG H T. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis[J]. Nat. Mater., 2023,22:100-108.

    27. [27]

      KE J, JI Y J, LIU D, CHEN J X, WANG Y, LI Y Y, HU Z W, HUANG W H, SHAO Q, LU J M. Optimizing acidic oxygen evolution with manganese-doped ruthenium dioxide assembly[J]. ACS Appl. Mater. Interfaces, 2025,17:13-21.

    28. [28]

      ZHOU Y N, YU N, LV Q X, LIU B, DONG B, CHAI Y M. Surface evolution of Zn doped-RuO2 under different etching methods towards acidic oxygen evolution[J]. J. Mater. Chem. A, 2022,10:16193-16203.

    29. [29]

      HOU J G, SUN Y Q, WU Y Z, CAO S Y, SUN L C. Promoting active sites in core-shell nanowire array as Mott-Schottky electrocatalysts for efficient and stable overall water splitting[J]. Adv. Funct. Mater., 2018,281704447.

    30. [30]

      KIRTI , NANDHA N, SINGH P S, SRIVASTAVA D N. Improved OER performance on the carbon composite electrode through tailored wettability[J]. ACS Appl. Energy Mater., 2021,4:9618-9626.

    31. [31]

      SUN Y X, CAI Q G, WANG Z, LI Z C, ZHOU Q Y, LI X, ZHAO D Y, LU J F, TIAN S Q, LI Y, WANG S F. Two-dimensional SnS mediates NiFe-LDH-layered electrocatalyst toward boosting OER activity for water splitting[J]. ACS Appl. Mater. Interfaces., 2024,16:23054-23060.

    32. [32]

      WEI J M, LOU J L, HU W B, SONG X K, WANG H F, YANG Y, ZHANG Y Q, JIANG Z R, MEI B B, WANG L B, YANG T H, WANG Q, LI X P. Superstructured carbon with enhanced kinetics for zinc-air battery and self-powered overall water splitting[J]. Small, 2023,202308956.

    33. [33]

      LI W M, LIU R, YU G T, CHEN X J, YAN S, REN S Y, CHEN J J, CHEN W, WANG C, LU X F. Rationally construction of Mn-doped RuO2 nanofibers for high-activity and stable alkaline ampere-level current density overall water splitting[J]. Small, 2024,202307164.

    34. [34]

      ZHAO C F, WANG J, GAO Y, ZHANG J, HUANG C Y, SHI Q H, MU S C, XIAO Q F, HUO S J, XIA Z H, ZHANG J J, LU X G, ZHAO Y F. d-orbital manipulated Ru nanoclusters for high-efficiency overall water splitting at industrial-level current densities[J]. Adv. Funct. Mater., 2024,342307917.

    35. [35]

      JIANG R, DA Y M, ZHANG J F, WU H, FAN B B, LI J H, WANG J J, DENG Y D, HAN X P, HU W B. Non-equilibrium synthesis of stacking faults-abundant Ru nanoparticles towards electrocatalytic water splitting[J]. Appl. Catal. B-Environ., 2022,316121682.

    36. [36]

      YU Q Q, YU W Q, WANG Y J, HE J T, CHEN Y K, YUAN H F, LIU R Y, WANG J J, LIU S Y, YU J Y, LIU H, ZHOU W J. Hydroxyapatite-derived heterogeneous Ru-Ru2P electrocatalyst and environmentally-friendly membrane electrode toward efficient alkaline electrolyzer[J]. Small, 2023,192208045.

  • 加载中
    1. [1]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    4. [4]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    12. [12]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return