Citation: Min ZHU, Yuxin WANG, Xiao LI, Yaxu XU, Junwen ZHU, Zihao WANG, Yu ZHU, Xiaochen HUANG, Dan XU, Monsur Showkot Hossain Abul. Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392 shu

Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline

Figures(13)

  • AgVO3/ZIF 8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO3 and ZIF-8. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-power transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) spectroscopy, electron spin resonance (ESR) spectroscopy, transient photocurrent and electrochemical impedance spectroscopy (EIS) were used to characterize binary composites. Tetracycline (TC) was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions, and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents. In addition, we further investigated the photocatalytic mechanism of the binary composite material AgVO3/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst. The experimental results show that the degradation efficiency of 10% AZ, prepared with a molar ratio of 10% AgVO3 and ZIF-8 to TC, was 75.0%. This indicates that the photocatalytic activity can be maintained even under a certain ionic content, making it a suitable photocatalyst for optimal use. In addition, the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
  • 加载中
    1. [1]

      LIU F, NGUYEN T P, WANG Q, MASSUYEAU F, DAN Y, JIANG L. Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO)[J]. Appl. Surf. Sci., 2019,496143653. doi: 10.1016/j.apsusc.2019.143653

    2. [2]

      WU S Q, LI X Y, TIAN Y Q, LIN Y, HU Y H. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light[J]. Chem. Eng. J., 2021,406126747. doi: 10.1016/j.cej.2020.126747

    3. [3]

      WU S Q, HU H Y, LIN Y, ZHANG J L, HU Y H. Visible light photocatalytic degradation of tetracycline over TiO2[J]. Chem. Eng. J., 2020,382122842. doi: 10.1016/j.cej.2019.122842

    4. [4]

      DENG H, WANG X C, WANG L, LI Z J, LIANG P L, OU J Z, LIU K, YUAN L Y, JIANG Z Y, ZHENG L R, CHAI Z F, SHI W Q. Enhanced photocatalytic reduction of aqueous Re(Ⅶ) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc(Ⅶ) elimination[J]. Chem. Eng. J., 2020,401125977. doi: 10.1016/j.cej.2020.125977

    5. [5]

      WANG Y X, RAO L, WANG P F, SHI Z Y, ZHANG L X. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(Ⅵ); coexistence environment[J]. Appl. Catal. B?Environ., 2020,262118308. doi: 10.1016/j.apcatb.2019.118308

    6. [6]

      AMANGELSIN Y, SEMENOVA Y, DADAR M, ALJOFAN M, BJORKLUND G. The impact of tetracycline pollution on the aquatic environment and removal strategies[J]. Antibiotics?Basel, 2023,12(3)440. doi: 10.3390/antibiotics12030440

    7. [7]

      XU L Y, ZHANG H, XIONG P, ZHU Q Q, LIAO C Y, JIANG G B. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Sci. Total Environ., 2021,753141975. doi: 10.1016/j.scitotenv.2020.141975

    8. [8]

      WANG Z Y, CHEN Q W, ZHANG J Y, DONG J W, YAN H L, CHEN C, FENG R R. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River[J]. J. Environ. Manage., 2019,244:13-22. doi: 10.1016/j.jenvman.2019.04.070

    9. [9]

      KOE W S, LEE J W, CHONG W C, PANG Y L, SIM L C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environ. Sci. Pollut. R., 2020,27(3):2522-2565. doi: 10.1007/s11356-019-07193-5

    10. [10]

      XIA T L, LIN Y C, LI W Z, JU M T. Photocatalytic degradation of organic pollutants by MOFs based materials: A review[J]. Chin. Chem. Lett., 2021,32(10):2975-2984. doi: 10.1016/j.cclet.2021.02.058

    11. [11]

      RAFIQ A, IKRAM M, ALI S, NIAZ F, KHAN M, KHAN Q, MAQBOOL M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution[J]. J. Ind. Eng. Chem., 2021,97:111-128. doi: 10.1016/j.jiec.2021.02.017

    12. [12]

      BAVANI T, MADHAVAN J, PRASAD S, ALSALHI M S, ALJAAFREH M J. A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity[J]. Environ. Pollut., 2021,269116067. doi: 10.1016/j.envpol.2020.116067

    13. [13]

      ZHANG X, ZHANG J, YU J Q, ZHANG Y, CUI Z X, SUN Y, HOU B R. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light[J]. Antibiotics?Basel, 2018,220:57-66.

    14. [14]

      YU J H, DONG J X, SU X L, YANG J, ZHANG D, LIU J C, CAI P Q, LI Z P, ZHANG D F, PU X P. Preparation and characterization of AgVO3/Ag4V2O7/BiOI double S-scheme heterojunctions for the photocatalytic degradation of methylene orange and tetracycline[J]. J. Alloy. Compd., 2024,987174187. doi: 10.1016/j.jallcom.2024.174187

    15. [15]

      LIU Y B, LIU N, LIN M H, HUANG C F, LEI Z J, CAO H S, QI F G, OUYANG X P, ZHOU Y. Efficient visible-light-driven S-scheme AgVO3/Ag2S heterojunction photocatalyst for boosting degradation of organic pollutants[J]. Environ. Pollut., 2023,325121436. doi: 10.1016/j.envpol.2023.121436

    16. [16]

      JYOTSNA , KAUR A, KANSAL S K, UMAR A. β-AgVO3 nanowires/TiO2 nanoparticles heterojunction assembly with improved visible light driven photocatalytic decomposition of hazardous pollutants and mechanism insight[J]. Sep. Purif. Technol., 2020,251117271. doi: 10.1016/j.seppur.2020.117271

    17. [17]

      MISHRA N S, SARAVANAN P. Z-scheme promoted heterojunction photocatalyst (Ag@AgVO3/rGO/CeVO4) with improved interfacial charge transfer for efficient removal of aqueous organics irradiated under LED light[J]. Chemosphere, 2023,310136896. doi: 10.1016/j.chemosphere.2022.136896

    18. [18]

      LIU Z X, LIU Y D, SUN X B, JI H D, LIU W, CAI Z Q. Construction of Z-scheme Ag/AgVO3/carbon-rich g-C3N4 heterojunction for enhanced photocatalytic degradation of sulfamethiadiazole: DFT calculation and mechanism study[J]. Chem. Eng. J., 2022,433133604. doi: 10.1016/j.cej.2021.133604

    19. [19]

      XIA T L, LIN Y C, LI W Z, JU M T. Photocatalytic degradation of organic pollutants by MOFs based materials: A review[J]. Chin. Chem. Lett., 2021,32(10):2975-2984. doi: 10.1016/j.cclet.2021.02.058

    20. [20]

      ZHANG X, WANG J, DONG X X, LV Y K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment[J]. Chemosphere, 2020,242125144. doi: 10.1016/j.chemosphere.2019.125144

    21. [21]

      GAUTAM S, AGRAWAL H, THAKUR M, AKBARI A, SHARDA H, KAUR R, AMINI M. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review[J]. J. Environ. Chem. Eng., 2020,8(3)103726. doi: 10.1016/j.jece.2020.103726

    22. [22]

      SALAHSHOORI I, JORABCHI M N, BAGHBAN A, KHONAKDAR H A. Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment[J]. Chemosphere, 2024,350141010. doi: 10.1016/j.chemosphere.2023.141010

    23. [23]

      WANG T Q, WANG Y F, SUN M Z, HANIF A, WU H, GU Q F, OK Y S, TSANG D C W, LI J Y, YU J H, SHANG J. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde[J]. Chem. Sci., 2020,11(26):6670-6681. doi: 10.1039/D0SC01397H

    24. [24]

      ELAOUNI A, EL OUARDI M, ZBAIR M, BAQAIS A, SAADI M, AHSAINE H A. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: A review[J]. RSC Adv., 2022,12(49):31801-31817. doi: 10.1039/D2RA05717D

    25. [25]

      YUAN X, QU S L, HUANG X Y, XUE X G, YUAN C L, WANG S W, CAI P. Design of core-shelled g-C3N4@ ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation[J]. Chem. Eng. J., 2021,416129148. doi: 10.1016/j.cej.2021.129148

    26. [26]

      BAVANI T, MADHAVAN J, PRASAD S, ALSALHI M S, ALJAFFREH M, VIJAYANAND S. Fabrication of novel AgVO3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of rhodamine B under visible light irradiation[J]. Environ. Res., 2021,200111365. doi: 10.1016/j.envres.2021.111365

    27. [27]

      LIU Z X, LIU Y D, SUN X B, JI H D, LIU W, CAI Z Q. Construction of Z-scheme Ag/AgVO3/carbon-rich g-C3N4 heterojunction for enhanced photocatalytic degradation of sulfamethiadiazole: DFT calculation and mechanism study[J]. Chem. Eng. J., 2022,433133604. doi: 10.1016/j.cej.2021.133604

    28. [28]

      DAI H, YUAN X Z, JIANG L B, WANG H, ZHANG J, ZHANG J J, XIONG T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coord. Chem. Rev., 2021,441213985. doi: 10.1016/j.ccr.2021.213985

    29. [29]

      DHARMAN R K, MARIAPPAN A, OH T H. Accelerated photocatalytic degradation of sulfonamide antibiotic pollutant using oxygen vacancy in metal-organic framework ZIF-8/Ag3PO4 heterostructure[J]. Surf. Interfaces, 2023,39102998. doi: 10.1016/j.surfin.2023.102998

    30. [30]

      WANG X J, HU S S, MAO H T, WEI X Y, NARAGINTI S. Facile fabrication of AgVO3/rGO/BiVO4 hetero junction for efficient degradation and detoxification of norfloxacin[J]. Environ. Res., 2023,227115623. doi: 10.1016/j.envres.2023.115623

    31. [31]

      LI C X, CHE H N, YAN Y S, LIU C B, DONG H J. Z-scheme AgVO3/ZnIn2S4 photocatalysts: "One stone and two birds" strategy to solve photocorrosion and improve the photocatalytic activity and stability[J]. Chem. Eng. J., 2020,398125523. doi: 10.1016/j.cej.2020.125523

    32. [32]

      WU Y F, ZHU W H, YI G Y, SU X X, PAN Q S, ODERINDE O, XIAO G M, CHEN L J, ZHANG C X, ZHANG Y L. Excellent performance of AgVO3@ZIF (Zn, Co) interfacial heterojunction for photodegradation of organic pollutants: Experimental and computational studies[J]. J. Ind. Eng. Chem., 2024,135:377-387. doi: 10.1016/j.jiec.2024.01.049

    33. [33]

      LI K D, ZHENG B W, DING L, TAO C Y, ZHANG S, ZHANG L. Integration of high visible-light-driven ternary dual Z-scheme AgVO3-InVO4/g-C3N4 heterojunction nanocomposite for enhanced uranium􀃱 photoreduction separation[J]. Environ. Pollut., 2023,334122168. doi: 10.1016/j.envpol.2023.122168

    34. [34]

      QIN Y Y, LI H, LU J, YAN Y S, LU Z Y, LIU X L. Enhanced photocatalytic performance of MoS2 modified by AgVO3 from improved generation of reactive oxygen species[J]. Chin. J. Catal., 2018,39(9):1470-1483. doi: 10.1016/S1872-2067(18)63111-0

    35. [35]

      XUE B, YANG C R, CHANG M, LIU D H. Structural design of core-shell ZIF-8@ NH2-MIL-125 photocatalyst for synergistic adsorption-photocatalytic degradation of tetracycline hydrochloride[J]. J. Alloy. Compd, 2024,973172850. doi: 10.1016/j.jallcom.2023.172850

    36. [36]

      XIA Q S, HAO Y, DENG S M, YANG L A, WANG R X, WANG X F, LIU Y, LIU H L, XIE M X. Visible light assisted heterojunction composite of AgI and CDs doped ZIF-8 metal-organic framework for photocatalytic degradation of organic dye[J]. J. Photochem. Photobiol. A?Chem., 2023,434114223. doi: 10.1016/j.jphotochem.2022.114223

    37. [37]

      HUMAYUN M, WANG C D, LUO W. Recent progress in the synthesis and applications of composite photocatalysts: A critical review[J]. Small Methods, 2022,6(2)2101395. doi: 10.1002/smtd.202101395

    38. [38]

      ZHU Y, LIU Y, ZHANG L, CHEN X Y, WANG L R, XU Y X, LIU J, ZHU W F, HOSSAIN A M S, RUI H Y. Construction of Co3O4/Bi5O7I heterojunction derived from ZIF-67/BiOI with enhanced photodegradation ability[J]. Mater. Res. Bull., 2024,179112977. doi: 10.1016/j.materresbull.2024.112977

    39. [39]

      GUAN G J, YE E Y, YOU M L, LI Z B. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: Current status and future perspectives[J]. Small, 2020,16(19)1907087. doi: 10.1002/smll.201907087

    40. [40]

      JIANG W, LI Z, LIU C B, WANG D D, YAN G S, LIU B, CHE G B. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125 (Ti) composite photocatalyst[J]. J. Alloy. Compd., 2021,854157166. doi: 10.1016/j.jallcom.2020.157166

    41. [41]

      SHU S, WANG H J, GUO X Y, WANG Y, ZENG X L. Efficient photocatalytic degradation of sulfamethazine by Cu-CuxO/TiO2 composites: Performance, photocatalytic mechanism and degradation pathways[J]. Sep. Purif. Technol., 2023,323124458. doi: 10.1016/j.seppur.2023.124458

    42. [42]

      MUSIAL J, MLYNARCZYK D T, STANISZ B J. Photocatalytic degradation of sulfamethoxazole using TiO2-based materials-perspectives for the development of a sustainable water treatment technology[J]. Sci. Total Environ., 2023,856159122. doi: 10.1016/j.scitotenv.2022.159122

    43. [43]

      QIN Y Y, LI H, LU J, YAN Y S, LU Z Y, LIU X L. Enhanced photocatalytic performance of MoS2 modified by AgVO3 from improved generation of reactive oxygen species[J]. Chin. J. Catal., 2018,39(9):1470-1483. doi: 10.1016/S1872-2067(18)63111-0

    44. [44]

      CHEN D Y, LI B L, PU Q M, CHEN X, WEN G, LI Z S. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics[J]. J. Hazard. Mater., 2019,373:303-312. doi: 10.1016/j.jhazmat.2019.03.090

    45. [45]

      LIU Y B, LIU N, LIN M H, HUANG C F, LEI Z J, CAO H S, QI F G, OUYANG X P, ZHOU Y. Efficient visible-light-driven S-scheme AgVO3/Ag2S heterojunction photocatalyst for boosting degradation of organic pollutants[J]. Environ. Pollut., 2023,325121436. doi: 10.1016/j.envpol.2023.121436

    46. [46]

      CHEN Y B, ZHOU Y, ZHANG J, LI J X, YAO T T, CHEN A N, CHEN Z Y. Ag bridged Z-scheme AgVO3/Bi4Ti3O12 heterojunction for enhanced antibiotic degradation[J]. J. Phys. Chem. Solids, 2022,161110428. doi: 10.1016/j.jpcs.2021.110428

    47. [47]

      EBRAHIMI A, HAGHIGHI M, SHABANI M. Design of novel solar-light-induced KBi6O9I/Ag-AgVO3 nanophotocatalyst with Ag-bridged Z-scheme charge carriers separation and boosted photo-elimination of hospital effluents[J]. Environ. Pollut., 2024,346123584. doi: 10.1016/j.envpol.2024.123584

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    3. [3]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    6. [6]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    7. [7]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

Metrics
  • PDF Downloads(0)
  • Abstract views(79)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return