Citation: Dongheng WANG, Si LI, Shuangquan ZANG. Construction of chiral alkynyl silver chains and modulation of chiral optical properties[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379 shu

Construction of chiral alkynyl silver chains and modulation of chiral optical properties

Figures(6)

  • Based on the chiral ligand-induced strategy, three pairs of green-emitting chiral alkynyl silver chains {[Ag10(bpy)10(L/D-1)4](ClO4)6·H2O]}n (L/D-Ag10-1), {[Ag10(bpy)10(L/D-2)4](ClO4)6·3CH3OH}n (L/D-Ag10-2), and {[Ag10(bpy)10(L/D-3)4](ClO4)6}n (L/D-Ag10-3) were successfully obtained by reacting three pairs of aromatic alkyne ligands with different terminal groups [4-ethynyl-2R-isoindoline-1, 3-dione, R=1-hydroxy-2-propyl (L/D-1), 1-hydroxy-3-methyl-2-butyl (L/D-2), 2-hydroxy-1-phenylethyl (L/D-3)], and 2, 2′-bipyridine (bpy) with silver perchlorate (AgClO4). The crystal structure was determined by single-crystal X-ray diffraction (SCXRD), and the molecular formula composition was demonstrated by thermogravimetric analysis (TGA), elemental analysis (EA), and 1H NMR. By circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy, it was demonstrated that the design approach using a chiral alkyne-based ligand in combination with an Ag(Ⅰ) was effective in inducing chirality in the polymer. Interestingly, the degree of distortion of the polymer backbone as well as the interchain interactions were significantly increased with the increase of the spatial site resistance of the terminal group of the alkyne-based ligand, which was accompanied by a gradual increase in the values of the absorption asymmetry factor (gabs) and the luminescence asymmetry factor (glum). In addition, L/D-Ag10-2 exhibited obvious aggregation-induced luminescence in the DMF-H2O system through the dissolution-reassembly strategy, and the new aggregates showed obvious enhancement of the chiral optical properties, with the |gabs| and |glum| values of the aggregates being 74.6 times and 12.5 times higher than those of the crystalline state.
  • 加载中
    1. [1]

      LEONG W L, VITTAL J J. One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications[J]. Chem. Rev., 2011, 111(2): 688-764  doi: 10.1021/cr100160e

    2. [2]

      CHEN H X, LIU C Y, ZHOU X, CHEN M M, NI C Y, LANG J P. One-dimensional coordination polymers based on a tripyridine olefin ligand: Synthesis, structures and photoelectronic properties. Chinese J. Inorg. Chem., 2019,35(11):2038-2044  doi: 10.11862/CJIC.2019.228

    3. [3]

      CAMPBELL M G, POWERS D C, RAYNAUD J, GRAHAM M J, XIE P, LEE E, RITTER T. Synthesis and structure of solution-stable one-dimensional palladium wires[J]. Nat. Chem., 2011, 3(12): 949-953  doi: 10.1038/nchem.1197

    4. [4]

      CHEN L, WEI R, TAO J, HUANG R, ZHENG L. Thermal and photoinduced valence tautomerism of a chain compound[J]. Sci. China‒Chem., 2012, 55: 1037-1041

    5. [5]

      HORIUCHI S, TACHIBANA Y, YAMASHITA M, YAMAMOTO K, MASAI K, TAKASE K, MATSUTANI T, KAWAMATA S, KURASHIGE Y, YANAI T. Multinuclear metal-binding ability of a carotene[J]. Nat. Commun., 2015, 6(1): 6742  doi: 10.1038/ncomms7742

    6. [6]

      HORWITZ N E, XIE J, FILATOV A S, PAPOULAR R J, SHEPARD W E, ZEE D Z, GRAHN M P, GILDER C, ANDERSON J S. Redox-active 1D coordination polymers of iron-sulfur clusters[J]. J. Am. Chem. Soc., 2019, 141(9): 3940-3951  doi: 10.1021/jacs.8b12339

    7. [7]

      KALIYAPPAN T, KANNAN P. Coordination polymers[J]. Prog. Polym. Sci., 2000, 25(3): 343-370  doi: 10.1016/S0079-6700(00)00005-8

    8. [8]

      RATH B B, GALLO G, DINNEBIER R E, VITTAL J J. Reversible thermosalience in a one-dimensional coordination polymer preceded by anisotropic thermal expansion and the shape memory effect[J]. J. Am. Chem. Soc., 2021, 143(4): 2088-2096  doi: 10.1021/jacs.0c12363

    9. [9]

      MONDAL S, SAHOO R, BEHERA J, DAS M C. Advances on silver-based MOFs and/or CPs and their composites: Synthesis strategies and applications[J]. Coord. Chem. Rev., 2024, 514: 215924  doi: 10.1016/j.ccr.2024.215924

    10. [10]

      JIAN Y, PENG S M, LIU N, LI M F, HE C. Structures of silver and cobalt coordination polymers constructed with azo-bipyridine ligand. Chinese J. Inorg. Chem., 2016, 32(9): 1676-1682
       

    11. [11]

      LI Z F, ZHANG Z W, CUI Y Z, LIU M, YANG Y P, JIN Q H. Syntheses, characterizations and crystal structures of two kinds of silver(Ⅰ) complexes derived from thiol ligand[J]. Chinese J. Inorg. Chem., 2016, 32(1): 139-144
       

    12. [12]

      LU Y, LYU T X, HU W J, WU X Y, ZHAO G L. Syntheses, structures, DNA interaction of Ag(Ⅰ) and Cd(Ⅱ) coordination polymers based on biphenyl-2, 4, 4′, 6-tetracarboxylic acid and imidazo-phenanthrolin-phenoxy acetic acid[J]. Chinese J. Inorg. Chem., 2017, 33(10): 1869-1875  doi: 10.11862/CJIC.2017.215

    13. [13]

      AWALEH M O, BADIA A, BRISSE F. One-dimensional coordination polymers incorporating silver(Ⅰ) perfluorocarboxylate cuboctahedral clusters and the bis(methylthio)methane ligand[J]. Inorg. Chem., 2007, 46(8): 3185-3191  doi: 10.1021/ic062232q

    14. [14]

      GUPTA A K, ORTHABER A. The self-assembly of [{Ag3(C≡CtBu)2}n]n+ building units into a template-free cuboctahedron and anion-encapsulating silver cages[J]. Inorg. Chem., 2019, 58(23): 16236-16240  doi: 10.1021/acs.inorgchem.9b02770

    15. [15]

      TAO D D, WANG Q, YAN X S, CHEN N, LI Z, JIANG Y B. Ag+ coordination polymers of a chiral thiol ligand bearing an AIE fluorophore[J]. Chem. Commun., 2017, 53(1): 255-258  doi: 10.1039/C6CC08596B

    16. [16]

      WANG Z, SU H F, ZHANG L P, DOU J M, TUNG C H, SUN D, ZHENG L. Stepwise assembly of Ag42 nanocalices based on a Mo-anchored thiacalix[4] arene metalloligand[J]. ACS Nano, 2022, 16(3): 4500-4507  doi: 10.1021/acsnano.1c10905

    17. [17]

      ZHANG B, CHEN X, YU F, SU M, LI B, ZHANG T. Silver(Ⅰ) architectures based on rigid terpyridyl-carboxyl ligands: Synthesis, crystal structure and electrochemical properties[J]. Chin. J. Chem., 2016, 34(10): 1027-1032  doi: 10.1002/cjoc.201600302

    18. [18]

      WANG Y, CUI Y Z, LIU M, WANG M Q, GENG W X, LI Z F, JIN Q H. Syntheses, characterization and luminescent properties of silver(Ⅰ) complexes based on diphosphine ligands[J]. Chinese J. Inorg. Chem., 2018, 34(2): 381-386
       

    19. [19]

      KUWAHARA T, OHTSU H, TSUGE K. Synthesis and photophysical properties of silver(Ⅰ) coordination polymers bridged by dimethylpyrazine: Comparison of emissive excited states between silver(Ⅰ) and copper(Ⅰ) congeners[J]. Inorg. Chem., 2024, 63(18): 8120-8130  doi: 10.1021/acs.inorgchem.4c00271

    20. [20]

      LIU A, WANG C C, WANG C Z, FU H F, PENG W, CAO Y L, CHU H Y, DU A F. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers[J]. J. Colloid Interface Sci., 2018, 512: 730-739  doi: 10.1016/j.jcis.2017.10.099

    21. [21]

      MIN K S, SUH M P. Silver(Ⅰ)-polynitrile network solids for anion exchange: Anion-induced transformation of supramolecular structure in the crystalline state[J]. J. Am. Chem. Soc., 2000, 122(29): 6834-6840  doi: 10.1021/ja000642m

    22. [22]

      WANG J Y, YUAN J W, LIU X M, LIU Y J, BAI F, DONG X Y, ZANG S Q. Engineering intelligent chiral silver cluster-assembled materials for temperature-triggered dynamic circularly polarized luminescence[J]. Aggregate, 2024, 5(3): e508  doi: 10.1002/agt2.508

    23. [23]

      WU F, HE D, CHEN L, LIU F, HUANG H, DAI J, ZHANG S, YOU J. Antibacterial coordination polymer hydrogels composed of silver(Ⅰ)-PEGylated bisimidazolylbenzyl alcohol[J]. RSC Adv., 2018, 8(37): 20829-20835  doi: 10.1039/C8RA00682B

    24. [24]

      XI X, LIU Y, CUI Y. Homochiral silver-based coordination polymers exhibiting temperature-dependent photoluminescence behavior[J]. Inorg. Chem., 2014, 53(5): 2352-2354  doi: 10.1021/ic4027865

    25. [25]

      YUAN H, SHANG P, YANG J, HUANG Q, SONG L, JIANG X F. Anion-directed self-assembly of calix[4] arene-based silver(Ⅰ) coordination polymers and photocatalytic degradation of organic pollutants[J]. Inorg. Chem., 2023, 62(6): 2652-2662  doi: 10.1021/acs.inorgchem.2c03587

    26. [26]

      ALTAVA B, BURGUETE M I, GARCÍA VERDUGO E, LUIS S V. Chiral catalysts immobilized on achiral polymers: Effect of the polymer support on the performance of the catalyst[J]. Chem. Soc. Rev., 2018, 47(8): 2722-2771  doi: 10.1039/C7CS00734E

    27. [27]

      SUN M, LI S, HAO C, XU C, KUANG H. Chiral nanoprobes and their biological effects[J]. Chin. J. Chem., 2021, 39(1): 25-31  doi: 10.1002/cjoc.202000392

    28. [28]

      YU F, LI R, YANG X, SHI Y, WANG Z. Superatomic-based chirality: Asymmetric structures constructed by superatoms[J]. Aggregate, 2024, 5(4): e539  doi: 10.1002/agt2.539

    29. [29]

      YUAN L, ZHANG Y P, ZHENG Y X. Chiral thermally activated delayed fluorescence materials for circularly polarized organic light-emitting diodes[J]. Sci. China-Chem, 2024, 67(4): 1097-1116  doi: 10.1007/s11426-023-1910-1

    30. [30]

      FANG J J, LIU Z, SHEN Y L, WANG Z Y, XIE Y P, LU X. Chiral copper(Ⅰ) halide clusters and coordination chain exhibiting photoluminescence and circularly polarized luminescence[J]. ACS Mater. Lett., 2024, 6(4): 1199-1206  doi: 10.1021/acsmaterialslett.4c00290

    31. [31]

      GÓMEZ GARCÍA C J, CORONADO E, CURRELI S, GIMÉNEZ SAIZ C, DEPLANO P, MERCURI M L, PILIA L, SERPE A, FAULMANN C, CANADELL E. A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate) ferrate(Ⅲ) hybrid molecular system[J]. Chem. Commun., 2006, (47): 4931-4933  doi: 10.1039/B610408H

    32. [32]

      LIU H, REN D D, GAO P F, ZHANG K, WU Y P, FU H R, MA L F. Multicolor-tunable room-temperature afterglow and circularly polarized luminescence in chirality-induced coordination assemblies[J]. Chem. Sci., 2022, 13(46): 13922-13929  doi: 10.1039/D2SC05353E

    33. [33]

      THOMAS J, JÄGER W, XU Y. Chirality induction and amplification in the 2, 2, 2-trifluoroethanol…propylene oxide adduct[J]. Angew. Chem. -Int. Edit., 2014, 53(28): 7277-7280  doi: 10.1002/anie.201403838

    34. [34]

      LIU Z, FANG J J, WANG Z Y, XIE Y P, LU X. Assembly of copper alkynyl clusters into dimensionally diverse coordinated polymers mediated by pyridine ligands[J]. Inorg. Chem., 2024, 63(24): 11146-11154  doi: 10.1021/acs.inorgchem.4c00822

    35. [35]

      ZHANG M M, DONG X Y, WANG Y J, ZANG S Q, MAK T C W Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands[J]. Coord. Chem. Rev., 2022, 453: 214315  doi: 10.1016/j.ccr.2021.214315

    36. [36]

      AI Y, NI Z, SHU Z, ZENG Q, LEI X, ZHU Y, ZHANG Y, FEI Y, LI Y. Supramolecular strategy to achieve distinct optical characteristics and boosted chiroptical enhancement based on the closed conformation of platinum(Ⅱ) complexes[J]. Inorg. Chem., 2023, 62(27): 10665-10674  doi: 10.1021/acs.inorgchem.3c01080

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(1)
  • Abstract views(329)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return