Citation: Xiaonan LI, Hui HAN, Yihan ZHANG, Jing XIONG, Tingting GUO, Juanzhi YAN. A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376 shu

A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property

Figures(5)

  • Under the condition of solvothermal synthesis, the viologen ligand 1, 1′‐bis(3‐carboxyphenyl)‐(4, 4′‐bipyri‐ dine) dichloride (H2bcbpy·2Cl) and KI are coordinated with the metal cadmium ions. A case of thermochromic coor‐ dination polymer [Cd(bcbpy)I2] ·2H2O (1) was constructed. Complex 1 displays a 1D chain structure and exhibits thermochromic behavior. Under different temperature stimulation, the complex (ground) slowly changed from green to yellow‐green, and with the increase of temperature, the color of complex 1 gradually deepened, and finally became orange‐yellow. Therefore, complex 1 was prepared as a thermochromic film. In addition, we also performed electrochemical tests on complex 1, which showed that the complex is a semiconductor material.
  • 加载中
    1. [1]

      LIU S, LI Y, WANG Y, YU K M, HUANG B L, TSO C Y. Near‐infrared‐activated thermochromic perovskite smart windows[J]. Adv. Sci., 2022,9(14)2106090. doi: 10.1002/advs.202106090

    2. [2]

      GUO R, SHEN Y C, CHEN Y, CHENG C, YE C W, TANG S C. KCA/Na2SiO3/PNIPAm hydrogel with highly robust and strong solar modulation capability for thermochromic smart window[J]. Chem. Eng. J., 2024,486150194. doi: 10.1016/j.cej.2024.150194

    3. [3]

      LIU S, LI Y, WANG Y, DU Y W, YU K M, YIP H L, JEN A K Y, HUANG B L, TSO C Y. Mask‐inspired moisture‐transmitting and durable thermochromic perovskite smart windows[J]. Nat. Commun., 2024,15876. doi: 10.1038/s41467-024-45047-y

    4. [4]

      DENG B, ZHU Y N, WANG X W, ZHU J L, LIU M Y, LIU M Q, HE Y W, ZHU C Z, ZHANG C H, MENG H. An ultrafast, energy‐efficient electrochromic and thermochromic device for smart windows[J]. Adv. Mater., 2023,35(35)2302685. doi: 10.1002/adma.202302685

    5. [5]

      ZHAO X P, MOFID S A, GAO T, TAN G, JELLE B P, YIN X B, YANG R G. Durability‐enhanced vanadium dioxide thermochromic film for smart windows[J]. Mater. Today Phys., 2020,13100205. doi: 10.1016/j.mtphys.2020.100205

    6. [6]

      CHENG Z F, LEI L L, ZHAO B B, ZHU Y F, YU T, YANG W D, LI Y. High performance reversible thermochromic composite films with wide thermochromic range and multiple colors based on micro/nanoencapsulated phase change materials for temperature indicators[J]. Compos. Sci. Technol., 2023,240110091. doi: 10.1016/j.compscitech.2023.110091

    7. [7]

      SANJABI S, RAD J K, SALEHI‐MOBARAKEH H, MAHDAVIAN A R. Preparation of switchable thermo‐and photo‐responsive polyacrylic nanocapsules containing leuco‐dye and spiropyran: Multi‐level data encryption and temperature indicator[J]. J. Ind. Eng. Chem., 2023,119:647-659. doi: 10.1016/j.jiec.2022.12.011

    8. [8]

      PU Y, FANG J. Preparation and thermochromic behavior of low‐temperature thermochromic microcapsule temperature indicators[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2022,653129889. doi: 10.1016/j.colsurfa.2022.129889

    9. [9]

      ZHANG Y K, HU Z X, XIANG H X, ZHAI G X, ZHU M F. Fabrication of visual textile temperature indicators based on reversible thermochromic fibers[J]. Dyes Pigment., 2019,162:705-711. doi: 10.1016/j.dyepig.2018.11.007

    10. [10]

      ZHAO S W, YUAN A Q, ZHAO Y L, LIU T R, FU X W, JIANG L, LEI J X. Preparation of mechanically robust and thermochromic phase change materials for thermal energy storage and temperature indicator[J]. Energy Build., 2022,261111993. doi: 10.1016/j.enbuild.2022.111993

    11. [11]

      KUMAR J, AKHILA K, KUMAR P, DESHMUKH R K, GAIKWAD KIRTIRAJ K. Novel temperature‐sensitive label based on thermochromic ink for hot food packaging and serving applications[J]. J. Therm. Anal. Calorim., 2023,148:6061-6069. doi: 10.1007/s10973-023-12147-8

    12. [12]

      LIU Y, LIU G Y, WU Y, CAI W B, WANG Y, ZHANG S L, ZENG H B, LI X M. High‐temperature, reversible, and robust thermochromic fluorescence based on Rb2MnBr4(H2O)2 for anti‐counterfeiting[J]. Adv. Mater., 2023,35(35)2301914. doi: 10.1002/adma.202301914

    13. [13]

      MOLINA‐GONZÁLEZ J, ARELLANO‐MORALES A, MEZA O, RAMÍREZ‐GARCÍA G, DESIRENA H. An anti‐counterfeiting strategy based on thermochromic pigment activated by highly Yb3+ doped photothermal particles[J]. J. Alloy. Compd., 2021,850156709. doi: 10.1016/j.jallcom.2020.156709

    14. [14]

      WANG J Q, YIN T, GE J P. A disposable thermally triggered photonic crystal anti‐counterfeiting tag with irreversible response and multi‐step color changes[J]. Small, 2024,202311308. doi: 10.1002/smll.202311308

    15. [15]

      CHENG Z F, ZHAO B B, LEI L L, ZHU Y F, WEI Z B, YU T, FAN J H, LI Y. Self‐assembled poly(lactic acid) films with high heat resistance and multi‐stage thermochromic properties prepared by blown film‐annealing[J]. Chem. Eng. J., 2024,480148261. doi: 10.1016/j.cej.2023.148261

    16. [16]

      LAN R C, WANG Q, SHEN C, HUANG R, BAO J Y, ZHANG Z P, ZHANG L Y, YANG H. Humidity‐induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks[J]. Adv. Funct. Mater., 2021,31(51)2106419. doi: 10.1002/adfm.202106419

    17. [17]

      ZHU G Q, ZHANG J S, HUANG J, QIU Y H, LIU M T, YU J N, LIU C G, SHANG Q Q, HU Y, HU L H, ZHOU Y H. Recyclable and reprintable biobased photopolymers for digital light processing 3D printing[J]. Chem. Eng. J., 2023,452139401. doi: 10.1016/j.cej.2022.139401

    18. [18]

      LIU Y M, LV W X, FENG J Z, TIAN J W, WANG P, XU L G, LONG Y, YAO L. Emerging thermochromic perovskite materials: Insights into fundamentals, recent advances and applications[J]. Adv. Funct. Mater., 2024,34(37)2402234. doi: 10.1002/adfm.202402234

    19. [19]

      YANG D D, ZHENG H W, LIANG Q F, WU M, LI J B, DUAN R, JIANG F B, ZHENG X J. A multistimuli responsive crystalline Cd(Ⅱ)‐viologen coordination polymer with single‐crystal‐single‐crystal transformation[J]. Inorg. Chem., 2021,60:13500-13509. doi: 10.1021/acs.inorgchem.1c01832

    20. [20]

      WANG X F, LIN R L, SUN W Q, LIU J X, XU L X, REDSHAW C, FENG X. Cucurbit[J]. Adv. Optical Mater., 2024,12(23)2400839. doi: 10.1002/adom.202400839

    21. [21]

      SUN C, WANG M S, LI P X, GUO G C. Conductance switch of a bromoplumbate bistable semiconductor by electron‐transfer thermochromism[J]. Angew. Chem.‒Int. Edit., 2017,56(2):554-558. doi: 10.1002/anie.201610180

    22. [22]

      LI X N, TU Z M, LI L, WANG Z H, ZHANG H. A novel viologen‐based coordination polymer with multi‐stimuli responsive chromic properties: Photochromism, thermochromism, chemochromism and electrochromism[J]. Dalton Trans., 2020,49(10):3228-3233. doi: 10.1039/C9DT04699B

    23. [23]

      XU X, LIU T, YANG M L, TIAN A X, YING J. Three Anderson ‐, mo‐capped Weakley‐and Keggin‐based compounds modified by viologens acting as photochromic and thermochromic materials[J]. Mater. Lett., 2023,337133974. doi: 10.1016/j.matlet.2023.133974

    24. [24]

      ZHANG N N, HAN Y F, WANG M S. Planar viologen‐based crystalline compounds showing heat‐induced electron transfer and thermochromism[J]. Cryst. Growth Des., 2022,22(9):5293-5299. doi: 10.1021/acs.cgd.2c00404

    25. [25]

      GAO N, YING J, TIAN A X, YANG M L. Three Anderson and octamolybdate based compounds modified by an asymmetric viologen: Photo‐/thermo‐chromic and luminescence properties[J]. J. Alloy. Compd., 2024,976173001. doi: 10.1016/j.jallcom.2023.173001

    26. [26]

      ZHOU X, LI Y G, LI X, DU S L, YANG Y, XIONG K C, XIE Y, SHI X Y, GAI Y L. A multifunctional coordination polymer constructed by viologen derivatives: Photochromism, chemochromism, and MnO4- sensing[J]. Inorg. Chem, 2022,61(30):11687-11694. doi: 10.1021/acs.inorgchem.2c01273

    27. [27]

      ZHAO G Z, LIU J J. Two Zn‐viologen coordination polymers constructed from 1‐carboxyethyl‐4, 4'‐bipyridinium ligands: Crystal structures, photochromism and theoretical calculations[J]. Polyhedron, 2021,205115295. doi: 10.1016/j.poly.2021.115295

    28. [28]

      LIU J J, SUN Z L, LIU J M, XIA S B. A series of multi‐responsive viologen‐based alkaline‐earth metal coordination complexes: Thermochromism, photochromism, and vapochromism[J]. J. Mol. Struct., 2021,1238130444. doi: 10.1016/j.molstruc.2021.130444

    29. [29]

      LIU J J, WANG Z J, XIA S B, LIU J M, SHEN X. Photochromic and photocontrolled luminescence properties of two metal‐organic frameworks constructed from a naphthalene diimide derivative[J]. Dyes Pigment., 2020,172107856. doi: 10.1016/j.dyepig.2019.107856

    30. [30]

      LI S L, XU H M, ZHANG Y, YANG W, QI Z K, ZHANG J, ZHANG X M. A photochromic zinc viologen framework with a high‐contrast nonlinear optical switchable behavior[J]. Cryst. Growth Des., 2021,21(10):5752-5759. doi: 10.1021/acs.cgd.1c00647

    31. [31]

      LI H Y, XU H, ZANG S Q, MAK T C W. A viologen‐functionalized chiral Eu‐MOF as a platform for multifunctional switchable material[J]. Chem. Commun., 2016,52(3):525-528. doi: 10.1039/C5CC08168H

    32. [32]

      HU S Z, ZHANG J, CHEN S H, DAI J C, FU Z Y. Efficient ultraviolet light detector based on a crystalline viologen based metal‐organic framework with rapid visible color change under irradiation[J]. ACS Appl. Mater. Interfaces, 2017,9(46):39926-39929. doi: 10.1021/acsami.7b13367

    33. [33]

      LI L K, LI H Y, LI T, QUAN L H, XU J, LI F A, ZANG S Q. Photochromic and photomodulated luminescence properties of two metal‐viologen complexes constructed by a tetracarboxylate‑anchored bipyridinium‐based ligand[J]. CrystEngComm, 2018,20(41):6412-6219. doi: 10.1039/C8CE01335G

    34. [34]

      MA Y J, HU J X, HAN S D, PAN J, LI J H, WANG G M. Manipulating on/off singlemolecule magnet behavior in a Dy(Ⅲ)‐based photochromic complex[J]. J. Am. Chem. Soc., 2020,142(5):2682-2689. doi: 10.1021/jacs.9b13461

    35. [35]

      LIU J J, SHAN Y B, DAI W X, HUANG C C, LIN M J. Assembly of donor‐acceptor hybrid heterostructures based on iodoplumbates and viologen coordination polymers[J]. Dalton Trans., 2017,46(35):11556-11560. doi: 10.1039/C7DT02133J

    36. [36]

      GONG T, YANG X, FANG J J, SUI Q, XI F G, GAO E Q. Distinct chromic and magnetic properties of metal‐organic frameworks with a redox ligand[J]. ACS Appl. Mater. Interfaces, 2017,9(6):5503-5512. doi: 10.1021/acsami.6b15540

    37. [37]

      LI S L, HAN M, ZHANG Y, LI G P, LI M, HE G, ZHANG X M. X‐ray and UV dual photochromism, thermochromism, electrochromism, and amine‐selective chemochromism in an Anderson‐like Zn7 cluster‐based 7‐fold interpenetrated framework[J]. J. Am. Chem. Soc., 2019,141(32):12663-12672. doi: 10.1021/jacs.9b04930

    38. [38]

      LI S L, SHEN Y, YANG W, WANG Y J, QI Z K, ZHANG J, ZHANG X M. A photo‐responsive charge‐assisted hydrogen‐bonded organic network with ultra‐stable viologen radicals[J]. Chin. J. Chem., 2022,40(3):351-356. doi: 10.1002/cjoc.202100639

    39. [39]

      YANG X D, ZHU R, SUN L, GUO R Y, ZHANG J. Phototriggered mechanical movement in a bipyridinium‐based coordination polymer powered by electron transfer[J]. Inorg. Chem., 2018,57(5):2724-2729. doi: 10.1021/acs.inorgchem.7b03108

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    4. [4]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    14. [14]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return