Citation: Zhaoxuan ZHU, Lixin WANG, Xiaoning TANG, Long LI, Yan SHI, Jiaojing SHAO. Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368 shu

Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries

Figures(6)

  • By adding polyaniline (PANI) to improve the conductivity of poly(vinyl alcohol) (PVA) hydrogel electrolyte and introducing nano-SiO2 to form hydrogen bond interaction with the hydroxyl group in PVA, the mechanical properties, ion transport capacity, and structural stability of the electrolyte were improved. The prepared PVA/PANI/ SiO2 conductive hydrogel electrolytes showed high tensile stress (15.45 MPa), strain (516.09%), high ion mobility (0.56), ionic conductivity (0.992 mS·cm-1), and wide electrochemical window (2.56 V). A symmetrical battery using this electrolyte could achieve a stable cycle of more than 1 200 h with uniform deposition of zinc. The modified electrolyte significantly improves both the electrochemical and mechanical properties, while enhancing cycle stability and electrochemical reversibility.
  • 加载中
    1. [1]

      ZHOU X Q, ZHANG Y, GUN W J, ZHENG Z L. The influence of energy eco-efficiency on pollution reduction and carbon reduction and its spatial spillover effect: The regulatory role of heterogeneous envi-ronmental regulations[J]. Statistics and Management, 2024,39(2):102-112.

    2. [2]

      LIU Z C, PENG D G, ZHAO H R, WANG D H, LIU Y C. Develop-ment prospect of energy storage participating in auxiliary service of power system under dual-carbon target[J]. Energy Storage Science and Technology, 2022,11(2):704-716.

    3. [3]

      FORSYTH M, PORCARELLI L, WANG X, GOUJON N, MECER-REYES D. Innovative electrolytes based on ionic liquids and poly-mers for next-generation solid-state batteries[J]. Accounts Chem. Res., 2019,52(3):686-694. doi: 10.1021/acs.accounts.8b00566

    4. [4]

      MENG R W, LI H, LU Z Y, ZHANG C, WANG Z X, LIU Y X, WANG W C, LING G W, KANG F Y, YANG Q H. Tuning Zn-ion sol-vation chemistry with chelating ligands toward stable aqueous Zn an-odes[J]. Adv. Mater., 2022,34(37)2200677. doi: 10.1002/adma.202200677

    5. [5]

      ZHOU L J, WANG F X, YANG F, LIU X Q, YU Y X, ZHENG D Z, LU X H. Unshared pair electrons of zincophilic Lewis base enable long-life Zn Anodes under "three high" conditions[J]. Angew. Chem.-Int. Edit., 2022,61(40)e202208051. doi: 10.1002/anie.202208051

    6. [6]

      NAVEED A, YANG H J, SHAO Y Y, YANG J, YANNA N, LIU J, SHI S, ZHANG L, YE A, HE B, WANG J. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life bat-teries[J]. Adv. Mater., 2019,31(36)1900668. doi: 10.1002/adma.201900668

    7. [7]

      NAVEED A, YANG H J, YANG J, NULI Y N, WANG J L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phos-phate electrolyte[J]. Angew. Chem.-Int. Edit., 2019,58(9):2760-2764. doi: 10.1002/anie.201813223

    8. [8]

      FU C Y, WANG Y P, LU C G, ZHOU S, HE Q, HU Y Z, FENG M Y, WAN Y L, LIN J D, ZHANG Y F, PAN A Q. Modulation of hydrogel electrolyte enabling stable zinc metal anode[J]. Energy Storage Mater., 2022,51:588-598. doi: 10.1016/j.ensm.2022.06.034

    9. [9]

      GAO J T, GUO F J, JI C C, HE X J, MI H Y, QIU J S. A flexible and stable zinc-ion hybrid capacitor with polysaccharide-reinforced cross-linked hydrogel electrolyte and binder-free carbon cathode[J]. J. Mater. Chem. A, 2022,10(46):24639-24648. doi: 10.1039/D2TA06985G

    10. [10]

      ZHOU J J, LI Y, XIE L, XU R, ZHANG R H, GAO M, TIAN W, LI D W, QIAO L, WANG T, CAO J C, WANG D, HOU Y, FU W L, YANG B, ZENG J, CHEN P, LIANG K, KONG B. Humidity-sensi-tive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes[J]. Mater. Today Energy, 2021,21100712. doi: 10.1016/j.mtener.2021.100712

    11. [11]

      LIU Y, WU Y K, ZHOU X M, MO Y, ZHENG Y, YUAN G H, YANG M S. All-cellulose-based flexible zinc-ion battery enabled by waste pomelo peel[J]. J. Colloid Interface Sci., 2025,678:497-505. doi: 10.1016/j.jcis.2024.09.036

    12. [12]

      HUANG Y, LIU J W, ZHANG J Y, JIN S Y, JIANG Y X, ZHANG S D, LI Z G, ZHI C Y, DU G Q, ZHOU H. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte[J]. RSC Adv., 2019,9(29):16313-16319. doi: 10.1039/C9RA01120J

    13. [13]

      LI H F, LIU Z X, LIANG G J, HUANG Y, ZHU M S, PEI Z X, XUE Q, TANG Z J, WANG Y K, LI B H, ZHI C Y. Waterproof and tailor-able elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018,12(4):3140-3148. doi: 10.1021/acsnano.7b09003

    14. [14]

      NING L, ZHOU J X, XUE T, YAN X H, ZOU Z L, WANG B P, LU Y W, YU H X, ZHANG L Y, SHU J. Freeze-thawed polyacrylamide-polyvinyl alcohol double network with enhanced mechanical proper-ties as hydrogel electrolyte for zinc-ion battery[J]. J. Energy Storage, 2023,74109508. doi: 10.1016/j.est.2023.109508

    15. [15]

      HUANG S, WAN F, BI S S, ZHU J C, NIU Z Q, CHEN J. A self-healing integrated all-in-one zinc-ion battery[J]. Angew. Chem.-Int. Edit., 2019,58(13):4313-4317. doi: 10.1002/anie.201814653

    16. [16]

      SUN L, YAO Y Q, DAI L X, JIAO M L, DING B F, YU Q M, TANG J, LIU B L. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte[J]. Energy Storage Mater., 2022,47:187-194. doi: 10.1016/j.ensm.2022.02.012

    17. [17]

      ABDELKHALEK A, ABD EL-LATIF M, IBRAHIM H, HAMAD H. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water[J]. Sci. Rep., 2022,12(1)7060. doi: 10.1038/s41598-022-10602-4

    18. [18]

      YANG J F, WANG Q, WANG T, LIANG Y. Facile one-step precur-sor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures[J]. J. Porous Mat., 2017,24(4):889-897. doi: 10.1007/s10934-016-0328-3

    19. [19]

      XIONG W L, XIE Q Y, ZHANG H, ALAM M A, ZHU C, WANG L, XU J. Development of flexible Zn/MnO2 secondary batteries using a fumed silica-doped hydrogel electrolyte[J]. RSC Adv., 2024,14(50):37512-37520. doi: 10.1039/D4RA06602B

    20. [20]

      LI J Y, ZHANG H, LIU Z M, DU H, WAN H X, LI X C, YANG J, YAN C. Boosting dendrite-free zinc anode with strongly polar func-tional group terminated hydrogel electrolyte for high-safe aqueous zinc-ion batteries[J]. Adv. Funct. Mater., 2025,35(2)2412865. doi: 10.1002/adfm.202412865

    21. [21]

      HAN J J, CHEN Z W, XU J W. A novel electrolyte study on polyani-line aqueous zinc-ion battery[J]. Mater. Lett., 2021,304130629. doi: 10.1016/j.matlet.2021.130629

    22. [22]

      MENG Y Q, YE L, COATES P, TWIGG P. In situ cross-linking of poly (vinyl alcohol)/graphene oxide-polyethylene glycol nanocompos-ite hydrogels as artificial cartilage replacement: Intercalation struc-ture, unconfined compressive behavior, and biotribological behaviors[J]. J. Phys. Chem. C, 2018,122(5):3157-3167. doi: 10.1021/acs.jpcc.7b12465

    23. [23]

      SHIM G, TRAN M X, LIU G, BYUN D, LEE J K. Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesul-fonic acid-doped aqueous gel electrolyte[J]. Energy Storage Mater., 2021,35:739-749. doi: 10.1016/j.ensm.2020.12.009

    24. [24]

      LUO X, AKRAM M Y, YUAN Y, NIE J, ZHU X. Silicon dioxide/poly (vinyl alcohol) composite hydrogels with high mechanical properties and low swellability[J]. J. Appl. Polym. Sci., 2019,136(1)46895. doi: 10.1002/app.46895

    25. [25]

      WAN F, HU K D, LIU R Q, ZHANG S D, LI S F, LEI Y, YANG D, WANG C D, XIA Y Y, CHEN W G. Ice-template-induced highly ionic conductive PVA/PEG-SiO 2 gel polymer electrolyte for zinc-ion batteries[J]. Chem. Commun., 2024,60(56):7220-7223. doi: 10.1039/D4CC01874E

    26. [26]

      COELLO-MAULÉON C, ARREDONDO-ESPÍNOLA A, ALVAREZ-CONTRERAS L, GUERRA-BALCACÁZAR M, ARJONA N. Gel polymer electrolytes containing SiO2 spheres with tuned sizes to increase rechargeability of quasi-solid-state Zn-air bat-teries[J]. Electrochim. Acta, 2024,508145265. doi: 10.1016/j.electacta.2024.145265

    27. [27]

      FAN X Y, LIU J, SONG Z S, HAN X P, DENG Y D, ZHONG C, HU W B. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries[J]. Nano Energy, 2019,56:454-462. doi: 10.1016/j.nanoen.2018.11.057

    28. [28]

      TANG C, YAO Y Z, LI M N, WANG Y L, ZHANG Y, ZHU J, WANG L, LI L. A new polyvinyl alcohol lithium chloride hydrogel electrolyte: High ionic conductivity and wide working temperature range[J]. Adv. Funct. Mater., 2025,35(11)2417207. doi: 10.1002/adfm.202417207

    29. [29]

      FU J, ZHANG J, SONG X P, ZARRIN H, TIAN X F, QIAO J L, RASEN L, LI K C, CHEN Z W. A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries[J]. Energy Environ. Sci., 2016,9(2):663-670. doi: 10.1039/C5EE03404C

    30. [30]

      KUNDU D, VAJARGAH S H, WAN L, ADAMS B, PRENDERGAST D, NAZAR L F. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy Environ. Sci., 2018,11(4):881-892. doi: 10.1039/C8EE00378E

    31. [31]

      ZHU K Y, NIU X L, XIE W L, YANG H M, JIANG W K, MA M X, YANG W S. An integrated Janus hydrogel with different hydrophilic-ities and gradient pore structures for high-performance zinc-ion bat-teries[J]. Energy Environ. Sci., 2024,17(12):4126-4136. doi: 10.1039/D4EE01018C

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(2)
  • Abstract views(135)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return