Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction
- Corresponding author: Yuejun LI, bc640628@163.com
Citation:
Tieping CAO, Yuejun LI, Dawei SUN. Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(5): 903-912.
doi:
10.11862/CJIC.20240366
XU L, IQBAL R, WANG Y J, TAIMOOR S, HAO L D, DONG R H, LIUK H, TEXTER J, SUN Z Y. Emerging two-dimensional materials: Synthesis, physical properties, and application for catalysis in energy conversion and storage[J]. Innov. Mater., 2024,2(1)100060. doi: 10.59717/j.xinn-mater.2024.100060
DING X, JING W N, YIN Y T, HE G W, BAI S J, WANG F, LI UY, GUO L J. Multi-species defect engineering synergistic localized sur-face plasmon resonance boosting photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024,499156091. doi: 10.1016/j.cej.2024.156091
RRN C J, LI Q, LING C Y, WANG J L. Mechaniam-guided design of photocatalysts for CO2 reduction toward multiarbon products[J]. J. Am. Chem. Soc., 2023,145(51):28276-28284. doi: 10.1021/jacs.3c11972
SI S H, SHOU H W, MAO Y Y, CAI X Y, GENG Z K, ZHANG H Y, ZHANG J Y, TAN X, YE J H, YU T. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4[J]. Adv. Funct. Mater., 2023,61(41)e202209446.
HUANG H N, SHI R, LI Z H, ZHAO J Q, SU C L, ZHANG T R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew. Chem.-Int. Edit., 2022,61(17)e202200802. doi: 10.1002/anie.202200802
LIU Y P, ZOU R, CHEN Z X, TU W G, XIA R D, IWUOHA E L, PENG X W. Engineering a hydrophobic-hydrophilic diphase in a Bi 2WO6-C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catal., 2024,14:138-147. doi: 10.1021/acscatal.3c03983
BOYKOBILOV D, THAKUR S, SAMIEV A, NASIMOV A, TURAEV K, SUVONKUL NURMANOV S, PRAKASH J, RUZIMURADOV Q. Electrochemical synthesis and modification of novel TiO2 nanotubes: Chemistry and role of key synthesis parameters for photocatalytic applications in energy and environment[J]. Inorg. Chem. Commun., 2024,170113419. doi: 10.1016/j.inoche.2024.113419
KORCOBAN D, HUANG Y Z L, ELBOUME A, LI Q, WEN X M, CHEN D H, CARUSO R A. Electroless Ag nanoparticle deposition on TiO2 nanorod arrays, enhancing photocatalytic and antibacterial prop-erties[J]. J. Colloid Interface Sci., 2024,680:146-156.
CAO T P, LI Y J, SUN D W. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic perfor-mance[J]. Chinese J. Inorg. Chem., 2023,39(4):699-708. doi: 10.11862/CJIC.2023.030
ZOU X, YAN Z R, TANG D F, FAN S C, PENG D L, JIANG Y L, WEI Q L. Intercalation pseudocapacitance of sodium-ion storage in TiO2(B)[J]. J. Mater. Chem. A, 2024,12:13770-13777. doi: 10.1039/D4TA02211D
CHAHKANDI M, ZARGAZI M, GHIASABADI B K, MOHAMMAD CHAHKANDI M M, GHIASABAD K B, CHUNG J S, YAZDI M K, SACB M R, BAGHAYERI M. Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core-shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solu-tions[J]. Chem. Eng. J., 2024,499155886. doi: 10.1016/j.cej.2024.155886
LIU X B, CHENG Z Y, LIN L Q, XU W T, CHEN S P, ZHUANG H Q. Fabrication of ternary Bi2S3/BiVO4/g-C3N4 composite material for enhanced photocatalytic degradation of antibiotics[J]. Diam. Relat. Mat., 2024,148111376. doi: 10.1016/j.diamond.2024.111376
WANG Y, WANG H H, WANG X Y, ZHANG J, WANG G Y, ZHANG X C. Facile synthesis of S-scheme Bi2S3/BiOCl heterojunc-tion with tunable bandgap structures for enhanced photocatalytic organic degradation performance[J]. Inorg. Chem. Commun., 2025,71113532.
DONG F, XIONG T, SUN Y J, ZHAO Z W, ZHOU Y, FENG X, WU Z B. A semimetal bismuth element as a direct plasmonic photocata-lyst[J]. Chem. Commun., 2014,50(72):10386-10389. doi: 10.1039/C4CC02724H
DONG F, ZHAO Z W, SUN Y J, ZHANG Y X, YAN S, WU Z B. An advanced semimetal-organic Bi spheres g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purifica-tion[J]. Environ. Sci. Technol., 2015,49(20):12432-12440. doi: 10.1021/acs.est.5b03758
YANG J J, LI L, XIAO C, YI X. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angew. Chem.-Int. Edit., 2023,62(47)e202311911. doi: 10.1002/anie.202311911
DING J, LI C H, YIN H S, ZHOU Y L, WANG S, LIU K X, LI M A, WANG J. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environ. Pollut., 2023,327121550. doi: 10.1016/j.envpol.2023.121550
MA H, YUAN C C, WANG X M, WANG H J, LONG Y P, CHEN Y Q, WANG Q, CONG Y Q, ZHANG Y. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system[J]. Sep. Purif. Technol., 2021,276119252. doi: 10.1016/j.seppur.2021.119252
LI Y Y, DANG L Y, HAN L F, LI P P, WANG J S, LI Z J. Iodine-sensitized Bi 4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. J. Mol. Catal. A-Chem., 2013,379(15):146-151.
XIE F X, MAO X M, FAN C M, WANG Y W. Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation[J]. Mater. Sci. Semicond. Process, 2014,27:380-389. doi: 10.1016/j.mssp.2014.07.020
AI Z H, HO W K, LEE S C, ZANG L Z. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Technol., 2009,43(11):4143-4150. doi: 10.1021/es9004366
NYHOLM R, BEMDTSSON A, MARTENSSON N. Core level bind-ing energies for the elements Hf to Bi (Z=72-83)[J]. J. Phys. C-Solid State Phys., 1980,13:L1091-L1096. doi: 10.1088/0022-3719/13/36/009
REN S C, YANG H M, ZHANG D D, GAO F F, NAN C, LI Z F, ZHOU W J, GAO N, LIANG Z H. Excellent performance of the pho-toelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite[J]. Appl. Surf. Sci., 2022,579152206. doi: 10.1016/j.apsusc.2021.152206
LONG L L, CHEN J J, ZHANG X, ZHANG A Y, HUANG Y X, RONG Q, YU H Q. Layer-controlled growth of MoS2 on self-assem-bled flower-like Bi 2S3 for enhanced photocatalysis under visible light irradiation[J]. NPG Asia Mater., 2016,8e263. doi: 10.1038/am.2016.46
CHEN J S, QIN S Y, SONG G X, XIANG T Y, FENG X F, YIN X H. Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO 2 to methyl formate in methanol[J]. Dalton Trans., 2013,42:15133-15138. doi: 10.1039/c3dt51887f
TOUDERT J, SERNA R, DE CASTRO M J. Exploring the optical po-tential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range[J]. J. Phys. Chem. C, 2012,116(38):20530-20539. doi: 10.1021/jp3065882
XU F Y, ZHANG J J, ZHU B C, YU J G, XU J S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ, 2018,230:194-202. doi: 10.1016/j.apcatb.2018.02.042
ZHONG Y, MA Y Q, CHEN D M, FENG Y M, ZHANG W Y, SUN Y J, LV G C, ZHANG W B, ZHANG J Z, DING H. S-scheme hetero-junction for efficient photocatalytic peroxymonosulfate activation to boost Co(Ⅳ)=O generation[J]. Water Res., 2024,258121774. doi: 10.1016/j.watres.2024.121774
TU W W, ZHOU Y, ZOU Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, chal-lenges, and prospects[J]. Adv. Mater., 2014,26(27):4607-4626. doi: 10.1002/adma.201400087
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
(a) Survey, (b) Ti2p, (c) O1s, (d) Bi4f, and S2p.
(a) UV-Vis DRS spectra; (b) (αhν)1/2-hν plots; (c) M-S curves; (d) PL spectra; (e) Transient photocurrent; (f) EIS (Inset: equivalent circuit).
(a) DMPO-·OH; (b) DMPO-·O2-; (c) Type Ⅱ heterostructure; (d) S-scheme heterostructure.