Citation: Tieping CAO, Yuejun LI, Dawei SUN. Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366 shu

Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction

  • Corresponding author: Yuejun LI, bc640628@163.com
  • Received Date: 12 October 2024
    Revised Date: 6 March 2025

Figures(9)

  • A novel Bi/Bi2S3/TiO2 composite fibers photocatalytic materials were constructed by in-situ hydrothermal method using TiO2 nanofibers prepared by electrospinning technology serve as the matrix, bismuth nitrate as the bismuth source and ethylene glycol as the reducing agent. The morphology, structure, and optoelectronic properties of the composite fibers material were analyzed by powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, ultraviolet-visible absorption spectroscopy, photocurrent response, electrochemical impedance spectroscopy, and fluorescence emission spectroscopy. The photocatalytic CO2 reduction performance of Bi/Bi2S3/TiO2 composite fibers under a gas-solid reaction system was investigated. The results show that metal Bi nanoparticles and scaly Bi2S3 are orderly constructed on the surface of TiO2 nanofibers. The surface plasmon resonance (SPR) effect of metal Bi has a synergistic effect with the Bi2S3/TiO2 S-scheme heterojunction, which enables the efficient spatial separation and transfer of photogenerated carriers and effectively enhances the photocatalytic activity of Bi/Bi2S3/TiO2. In-depth research found that the S-scheme heterojunction possesses a unique mechanism of carrier movement, resulting in a robust redox capacity and strong driving force. The main products of the photocatalytic CO2 reduction were CH4 and CH3OH, with yields of 4.21 and 9.86 μmol·h-1·g-1, respectively, about three times that of Bi2S3/TiO2.
  • 加载中
    1. [1]

      XU L, IQBAL R, WANG Y J, TAIMOOR S, HAO L D, DONG R H, LIUK H, TEXTER J, SUN Z Y. Emerging two-dimensional materials: Synthesis, physical properties, and application for catalysis in energy conversion and storage[J]. Innov. Mater., 2024,2(1)100060. doi: 10.59717/j.xinn-mater.2024.100060

    2. [2]

      DING X, JING W N, YIN Y T, HE G W, BAI S J, WANG F, LI UY, GUO L J. Multi-species defect engineering synergistic localized sur-face plasmon resonance boosting photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024,499156091. doi: 10.1016/j.cej.2024.156091

    3. [3]

      RRN C J, LI Q, LING C Y, WANG J L. Mechaniam-guided design of photocatalysts for CO2 reduction toward multiarbon products[J]. J. Am. Chem. Soc., 2023,145(51):28276-28284. doi: 10.1021/jacs.3c11972

    4. [4]

      SI S H, SHOU H W, MAO Y Y, CAI X Y, GENG Z K, ZHANG H Y, ZHANG J Y, TAN X, YE J H, YU T. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4[J]. Adv. Funct. Mater., 2023,61(41)e202209446.

    5. [5]

      HUANG H N, SHI R, LI Z H, ZHAO J Q, SU C L, ZHANG T R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew. Chem.-Int. Edit., 2022,61(17)e202200802. doi: 10.1002/anie.202200802

    6. [6]

      LIU Y P, ZOU R, CHEN Z X, TU W G, XIA R D, IWUOHA E L, PENG X W. Engineering a hydrophobic-hydrophilic diphase in a Bi 2WO6-C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catal., 2024,14:138-147. doi: 10.1021/acscatal.3c03983

    7. [7]

      BOYKOBILOV D, THAKUR S, SAMIEV A, NASIMOV A, TURAEV K, SUVONKUL NURMANOV S, PRAKASH J, RUZIMURADOV Q. Electrochemical synthesis and modification of novel TiO2 nanotubes: Chemistry and role of key synthesis parameters for photocatalytic applications in energy and environment[J]. Inorg. Chem. Commun., 2024,170113419. doi: 10.1016/j.inoche.2024.113419

    8. [8]

      KORCOBAN D, HUANG Y Z L, ELBOUME A, LI Q, WEN X M, CHEN D H, CARUSO R A. Electroless Ag nanoparticle deposition on TiO2 nanorod arrays, enhancing photocatalytic and antibacterial prop-erties[J]. J. Colloid Interface Sci., 2024,680:146-156.

    9. [9]

      CAO T P, LI Y J, SUN D W. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic perfor-mance[J]. Chinese J. Inorg. Chem., 2023,39(4):699-708. doi: 10.11862/CJIC.2023.030

    10. [10]

      ZOU X, YAN Z R, TANG D F, FAN S C, PENG D L, JIANG Y L, WEI Q L. Intercalation pseudocapacitance of sodium-ion storage in TiO2(B)[J]. J. Mater. Chem. A, 2024,12:13770-13777. doi: 10.1039/D4TA02211D

    11. [11]

      CHAHKANDI M, ZARGAZI M, GHIASABADI B K, MOHAMMAD CHAHKANDI M M, GHIASABAD K B, CHUNG J S, YAZDI M K, SACB M R, BAGHAYERI M. Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core-shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solu-tions[J]. Chem. Eng. J., 2024,499155886. doi: 10.1016/j.cej.2024.155886

    12. [12]

      LIU X B, CHENG Z Y, LIN L Q, XU W T, CHEN S P, ZHUANG H Q. Fabrication of ternary Bi2S3/BiVO4/g-C3N4 composite material for enhanced photocatalytic degradation of antibiotics[J]. Diam. Relat. Mat., 2024,148111376. doi: 10.1016/j.diamond.2024.111376

    13. [13]

      WANG Y, WANG H H, WANG X Y, ZHANG J, WANG G Y, ZHANG X C. Facile synthesis of S-scheme Bi2S3/BiOCl heterojunc-tion with tunable bandgap structures for enhanced photocatalytic organic degradation performance[J]. Inorg. Chem. Commun., 2025,71113532.

    14. [14]

      DONG F, XIONG T, SUN Y J, ZHAO Z W, ZHOU Y, FENG X, WU Z B. A semimetal bismuth element as a direct plasmonic photocata-lyst[J]. Chem. Commun., 2014,50(72):10386-10389. doi: 10.1039/C4CC02724H

    15. [15]

      DONG F, ZHAO Z W, SUN Y J, ZHANG Y X, YAN S, WU Z B. An advanced semimetal-organic Bi spheres g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purifica-tion[J]. Environ. Sci. Technol., 2015,49(20):12432-12440. doi: 10.1021/acs.est.5b03758

    16. [16]

      YANG J J, LI L, XIAO C, YI X. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angew. Chem.-Int. Edit., 2023,62(47)e202311911. doi: 10.1002/anie.202311911

    17. [17]

      DING J, LI C H, YIN H S, ZHOU Y L, WANG S, LIU K X, LI M A, WANG J. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environ. Pollut., 2023,327121550. doi: 10.1016/j.envpol.2023.121550

    18. [18]

      MA H, YUAN C C, WANG X M, WANG H J, LONG Y P, CHEN Y Q, WANG Q, CONG Y Q, ZHANG Y. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system[J]. Sep. Purif. Technol., 2021,276119252. doi: 10.1016/j.seppur.2021.119252

    19. [19]

      LI Y Y, DANG L Y, HAN L F, LI P P, WANG J S, LI Z J. Iodine-sensitized Bi 4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. J. Mol. Catal. A-Chem., 2013,379(15):146-151.

    20. [20]

      XIE F X, MAO X M, FAN C M, WANG Y W. Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation[J]. Mater. Sci. Semicond. Process, 2014,27:380-389. doi: 10.1016/j.mssp.2014.07.020

    21. [21]

      AI Z H, HO W K, LEE S C, ZANG L Z. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Technol., 2009,43(11):4143-4150. doi: 10.1021/es9004366

    22. [22]

      NYHOLM R, BEMDTSSON A, MARTENSSON N. Core level bind-ing energies for the elements Hf to Bi (Z=72-83)[J]. J. Phys. C-Solid State Phys., 1980,13:L1091-L1096. doi: 10.1088/0022-3719/13/36/009

    23. [23]

      REN S C, YANG H M, ZHANG D D, GAO F F, NAN C, LI Z F, ZHOU W J, GAO N, LIANG Z H. Excellent performance of the pho-toelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite[J]. Appl. Surf. Sci., 2022,579152206. doi: 10.1016/j.apsusc.2021.152206

    24. [24]

      LONG L L, CHEN J J, ZHANG X, ZHANG A Y, HUANG Y X, RONG Q, YU H Q. Layer-controlled growth of MoS2 on self-assem-bled flower-like Bi 2S3 for enhanced photocatalysis under visible light irradiation[J]. NPG Asia Mater., 2016,8e263. doi: 10.1038/am.2016.46

    25. [25]

      CHEN J S, QIN S Y, SONG G X, XIANG T Y, FENG X F, YIN X H. Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO 2 to methyl formate in methanol[J]. Dalton Trans., 2013,42:15133-15138. doi: 10.1039/c3dt51887f

    26. [26]

      TOUDERT J, SERNA R, DE CASTRO M J. Exploring the optical po-tential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range[J]. J. Phys. Chem. C, 2012,116(38):20530-20539. doi: 10.1021/jp3065882

    27. [27]

      XU F Y, ZHANG J J, ZHU B C, YU J G, XU J S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ, 2018,230:194-202. doi: 10.1016/j.apcatb.2018.02.042

    28. [28]

      ZHONG Y, MA Y Q, CHEN D M, FENG Y M, ZHANG W Y, SUN Y J, LV G C, ZHANG W B, ZHANG J Z, DING H. S-scheme hetero-junction for efficient photocatalytic peroxymonosulfate activation to boost Co(Ⅳ)=O generation[J]. Water Res., 2024,258121774. doi: 10.1016/j.watres.2024.121774

    29. [29]

      TU W W, ZHOU Y, ZOU Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, chal-lenges, and prospects[J]. Adv. Mater., 2014,26(27):4607-4626. doi: 10.1002/adma.201400087

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    8. [8]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(0)
  • Abstract views(131)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return