Citation: Qingjun PAN, Zhongliang GONG, Yuwu ZHONG. Advances in modulation of the excited states of photofunctional iron complexes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365 shu

Advances in modulation of the excited states of photofunctional iron complexes

  • Corresponding author: Yuwu ZHONG, zhongyuwu@iccas.ac.cn
  • Received Date: 11 October 2024
    Revised Date: 30 November 2024

Figures(11)

  • Abstracts: Many second and third-row transition-metal complexes with d6 and d8 electronic configurations possess long-lived metal-to-ligand charge-transfer (MLCT) excited states, endowing them with excellent photochemical and photophysical properties. However, these metals are typically expensive and have a low abundance in the earth′s crust. Therefore, it is significant to develop inexpensive and high earth-abundant first-row transition-metal complexes as new photo-functional materials. Among them, Fe(Ⅱ) complexes with a 3d6 electronic configuration and Fe(Ⅲ) complexes with a 3d5 electronic configuration are the subject of particular interest. The main challenges are to modulate the MLCT excited state of Fe(Ⅱ) complexes through efficient ligand design and to achieve the ligand-to-metal charge transfer (LMCT) luminescence of Fe(Ⅲ) complexes. In recent years, significant progress were made in the studies of Fe(Ⅱ) complexes with relatively long MLCT excited-state lifetimes and Fe(Ⅲ) complexes with efficient LMCT luminescence. These complexes have been successfully applied in different aspects of photochemistry. This review summarizes the recent advances in modulating the excited-state properties of photofunctional Fe(Ⅱ) and Fe(Ⅲ) complexes, focusing on the molecular designs of metal complexes and ligands. In addition, the potential developments and applications in the photochemistry of Fe(Ⅱ)/Fe(Ⅲ) complexes are discussed.
  • 加载中
    1. [1]

      DILUZIO S, CONNELL T U, MDLULI V, KOWALEWSK J F, BERNHARD S. Understanding Ir(Ⅲ) photocatalyst structure-activity relationships: A highly parallelized study of light-driven metal reduction processes[J]. J. Am. Chem. Soc., 2022, 144(10): 1431-1444

    2. [2]

      DING C Y, ZHANG R Y, ZHONG Y W, YAO J. Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission[J]. Chin. J. Struct. Chem., 2024, 43(10): 100393  doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      ARIASROTONDO D M. The fruit fly of photophysics[J]. Nat. Chem., 2022, 14(6): 716-716  doi: 10.1038/s41557-022-00955-8

    4. [4]

      LI Z Q, GONG Z L, LIANG T, BERNHARD S, ZHONG Y W, YAO J. Circularly polarized phosphorescence and photon transport of micro/nanocrystals of ruthenium and iridium complexes with chiral anions[J]. Sci. China Chem., 2023, 66(10): 2892-2902  doi: 10.1007/s11426-023-1723-7

    5. [5]

      KNOPF K M, MURPHY B L, MACMILLAN S N, BASKIN J M, BARR M P, BOROS E, WILSON J J. In vitro anticancer activity and in vivo biodistribution of rhenium(Ⅰ) tricarbonyl aqua complexes[J]. J. Am. Chem. Soc., 2017, 139(40): 14302-14314  doi: 10.1021/jacs.7b08640

    6. [6]

      VITTARDI S B, MAGAR R T, BREEN D J, RACK J J. A future perspective on phototriggered isomerizations of transition metal sulfoxides and related complexes[J]. J. Am. Chem. Soc., 2021, 143(2): 526-537  doi: 10.1021/jacs.0c08820

    7. [7]

      GONG Z L, DAN T X, CHEN J C, LI Z Q, YAO J, ZHONG Y W. Boost the circularly polarized phosphorescence of chiral organometallic platinum complexes by hierarchical assembly into fibrillar networks[J]. Angew. Chem. ‒Int. Edit., 2024, 63(25): e202402882  doi: 10.1002/anie.202402882

    8. [8]

      CHEN J C, GONG Z L, LI Z Q, ZHAO Y Y, TANG K, MA D X, XU F F, ZHONG Y W. Vaporchromic domino transformation and polarized photonic heterojunctions of organoplatinum microrods[J]. Angew. Chem. ‒Int. Edit., 2024: e202412651

    9. [9]

      GONG Z L, ZHANG H J, CHEN Y, LIU J X, AI Y H, LI Y Q, FENG Z H, ZHANG Q, GONG S L, CHEN Y, YAO C J, ZHU Y Y, XU L J, ZHONG Y W. Recent progress on photoactive nonprecious transition-metal complexe[J]. Sci. China. Chem., 2024, DOI:https://doi.org/10.1007/s11426-024-2345-0  doi: 10.1007/s11426-024-2345-0

    10. [10]

      HOCKIN B M, LI C, ROBERTSON N, ZYSMAN C E. Photoredox catalysts based on earth-abundant metal complexes[J]. Catal Sci Technol., 2019, 9(4): 889-915  doi: 10.1039/C8CY02336K

    11. [11]

      SINHA N, WENGER O S. Photoactive metal-to-ligand charge transfer excited states in 3d6 complexes with Cr(0), Mn(Ⅰ), Fe(Ⅱ), and Co(Ⅲ)[J]. J. Am. Chem. Soc., 2023, 145(9): 4903-4920  doi: 10.1021/jacs.2c13432

    12. [12]

      BÜLDT L A, GUO X, VOGEL R, PRESCIMONE A, WENGER O S. A tris(diisocyanide)chromium(0) complex is a luminescent analog of Fe[2, 2′-Bipyridine]32+[J]. J. Am. Chem. Soc., 2017, 139(2): 985-992  doi: 10.1021/jacs.6b11803

    13. [13]

      HAMZE R, PELTIER J L, SYLVINSON D, JUNG M, CARDENAS J, HAIGES R, SOLEILHAVOUP M, JAZZAR R, DJUROVICH P I, BERTRAND G, THOMPSON M E. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime[J]. Science, 2019, 363(6427): 601-606  doi: 10.1126/science.aav2865

    14. [14]

      HOSSAIN A, BHATTACHARYYA A, REISER O. Copper′s rapid ascent in visible-light photoredox catalysis[J]. Science, 2019, 364(6439): eaav9713  doi: 10.1126/science.aav9713

    15. [15]

      SHEN W T, SUN S X, FENG Y T, ZHANG F Q, LU T T, YANG Y S. Research progress of coordination‑driven assembly of single-component white light emission metal-organic complex materials[J]. Chinese J. Inorg. Chem., 2024, 40(1): 33-53  doi: 10.11862/CJIC.20230380

    16. [16]

      MOU W L, SUN Z Z, FAN S J, HOU C B, LI Z F, HAN H L, WANG G, YANG Y P, JIN Q H. Luminescence properties of Cu(Ⅰ) complexes with single-crystal-to-single-crystal conversion[J]. Chinese J. Inorg. Chem., 2024, 40(1): 99-110  doi: 10.11862/CJIC.20230303

    17. [17]

      OTTO S, GRABOLLE M, FORSTER C, KREITNER C, RESCH G U, HEINZE K. [Cr(ddpd)2]3+: A molecular, water-soluble, highly nir-emissive ruby analogue[J]. Angew. Chem. ‒Int. Edit., 2015, 54(39): 11572-11576  doi: 10.1002/anie.201504894

    18. [18]

      KITZMANN W R, HEINZE K. Charge-transfer and spin-flip states: Thriving as complements[J]. Angew. Chem. ‒Int. Edit., 2023, 62(15): e202213207  doi: 10.1002/anie.202213207

    19. [19]

      PAN Q J, GONG Z L, LI Z Q, ZHONG Y W. Molecular design and properties of near-infrared emitting Cr(Ⅲ) complexes[J]. Sci. Sin. Chim., 2023, 53(3): 464-473

    20. [20]

      HERR P, KERZIG C, LARSEN C B, HÄUSSINGER D, WENGER O S. Manganese(Ⅰ) complexes with metal-to-ligand charge transfer luminescence and photoreactivity[J]. Nat. Chem., 2021, 13(10): 956-962  doi: 10.1038/s41557-021-00744-9

    21. [21]

      DIERKS P, VUKADINOVIC Y, BAUER M. Photoactiveiron complexes: More sustainable, but still a challenge[J]. Inorg. Chem. Front., 2022, 9(2): 206-220  doi: 10.1039/D1QI01112J

    22. [22]

      MCCUSKER J K. Electronic structure in the transition metal block and its implications for light harvesting[J]. Science, 2019, 363(6426): 484-488  doi: 10.1126/science.aav9104

    23. [23]

      ZHANG W, KJÆR K S, ALONSO M R, BERGMANN U, CHOLLET M, FREDIN L A, HADT R G, HARTSOCK R W, HARLANG T, KROLL T, KUBIČEK K, LEMKE H T, LIANG H W, LIU Y, NIELSEN M M, PERSSON P, ROBINSON J S, SOLOMON E I, SUN Z, SOKARAS D, VAN DRIEL T B, WENG T C, ZHU D, WÄRNMARK K, SUNDSTRÖM V, GAFFNEY K J. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution[J]. Chem. Sci., 2017, 8(1): 515-523  doi: 10.1039/C6SC03070J

    24. [24]

      LIU Y, PERSSON P, SUNDSTRÖM V, WÄRNMARK K. Fe N‑ heterocyclic carbene complexes as promising photosensitizers[J]. Acc. Chem. Res., 2016, 49(8): 1477-1485  doi: 10.1021/acs.accounts.6b00186

    25. [25]

      CHÁBERA P, LINDH L, ROSEMANN N W, PRAKASH O, UHLIG J, YARTSEV A, WÄRNMARK K, SUNDSTRÖM V, PERSSON P. Photofunctionality of iron(Ⅲ) N-heterocyclic carbenes and related d5 transition metal complexes[J]. Coord. Chem. Rev., 2021, 426: 213517  doi: 10.1016/j.ccr.2020.213517

    26. [26]

      CHÁBERA P, LIU Y Z, PRAKASH O, THYRHAUG E, NAHHAS A, HONARFAR A, ESSÉN S, FREDIN L A, HARLANG T C B, KJÆR K S, HANDRUP K, ERICSON F, TATSUNO H, MORGAN K, SCHNADT J, HÄGGSTRÖM L, ERICSSON T, SOBKOWIAK A, LIDIN S, HUANG P, STYRING S, UHLIG J, BENDIX J, LOMOTH R, SUNDSTRÖM V, PERSSON P, WÄRNMARK K. A low-spin Fe(Ⅲ) complex with 100-ps ligand-to-metal charge transfer photoluminescence[J]. Nature, 2017, 543(7647): 695-699  doi: 10.1038/nature21430

    27. [27]

      CHEN X H, SHU M, LI F, ZHANG R, LIU J. Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2024, 39(12): 2279-2286  doi: 10.11862/CJIC.2023.196

    28. [28]

      BRESSLER C, MILNE C, PHAM V T, ELNAHHAS A, VAN DER VEEN R M, GAWELDA W, JOHNSON S, BEAUD P, GROLIMUND D, KAISER M, BORCA C N, INGOLD G, ABELA R, CHERGU M. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(Ⅱ) complex[J]. Science, 2009, 323(5913): 489-492  doi: 10.1126/science.1165733

    29. [29]

      AUBÖCK G, CHERGUI M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+[J]. Nat. Chem., 2015, 7(8): 629-633  doi: 10.1038/nchem.2305

    30. [30]

      JAMULA L L, BROWN A M, GUO D, MCCUSKER J K. Synthesis and characterization of a high-symmetry ferrous polypyridyl complex: Approaching the 5T2/3T1 crossing point for Fe(Ⅱ)[J]. Inorg. Chem., 2014, 53(1): 15-17  doi: 10.1021/ic402407k

    31. [31]

      HAN D, YANG L, HUANG H, CHAKRABORTY P, DIGHE S U, HUANG K W. Combinations of electron and proton donors in transition-metal complex mediated nitrogen reduction reactions[J]. Sci. China Chem., 2024, 67(7): 2136-2154  doi: 10.1007/s11426-023-1991-1

    32. [32]

      MENGEL A K C, FÖRSTER C, BREIVOGEL A, MACK K, OCHSMANN J R, LAQUAI F, KSENOFONTOV V, HEINZE K. A heteroleptic push-pull substituted iron(Ⅱ) bis(tridentate) complex with low-energy charge-transfer states[J]. Chem. ‒Eur. J., 2015, 21(2): 704-714  doi: 10.1002/chem.201404955

    33. [33]

      DARARI M, FRANCÉS M A, MAREKHA B, DOUDOUH A, WENGER E, MONARI A, HAACKE S, GROS P C. Towards iron(Ⅱ) complexes with octahedral geometry: Synthesis, structure and photophysical properties[J]. Molecules, 2020, 25(24): 5991  doi: 10.3390/molecules25245991

    34. [34]

      PAULUS B C, ADELMAN S L, JAMULA L L, MCCUSKER J K. Leveraging excited-state coherence for synthetic control of ultrafast dynamics[J]. Nature, 2020, 582(7811): 214-218  doi: 10.1038/s41586-020-2353-2

    35. [35]

      FATUR S M, SHEPARD S G, HIGGINS R F, SHORES M P, DAMRAUER N H. A synthetically tunable system to control MLCT excited-state lifetimes and spin states in iron(Ⅱ) polypyridines[J]. J. Am. Chem. Soc., 2017, 139(12): 4493-4505  doi: 10.1021/jacs.7b00700

    36. [36]

      SHEPARD S G, FATUR S M, RAPPÉ A K, DAMRAUER N H. Highly strained iron(Ⅱ) polypyridines: Exploiting the quintet manifold to extend the lifetime of MLCT excited states[J]. J. Am. Chem. Soc., 2016, 138(9): 2949-2952  doi: 10.1021/jacs.5b13524

    37. [37]

      WÄCHTLER M, KÜBEL J, BARTHELMES K, WINTER A, SCHMIEDEL A, PASCHER T, LAMBERT C, SCHUBERT U S, DIETZEK B. Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands[J]. Phys. Chem. Chem. Phys., 2016, 18(4): 2350-2360  doi: 10.1039/C5CP04447B

    38. [38]

      VITTARDI S B, MAGAR R T, SCHRAGE B R, ZIEGLER C J, JAKUBIKOVA E, RACK J J. Evidence for a lowest energy 3MLCT excited state in [Fe(tpy)(CN)3]-[J]. Chem. Commun., 2021, 57(38): 4658-4661  doi: 10.1039/D1CC01090E

    39. [39]

      WINKLER J R, CREUTZ C, SUTIN N. Solvent tuning of the excited-state properties of [2, 2′-bipyridine]tetracyanoferrate(Ⅱ): Direct observation of a metal-to-ligand charge-transfer excited state of iron(Ⅱ)[J]. J. Am. Chem. Soc., 1987, 109(11): 3470-3471  doi: 10.1021/ja00245a053

    40. [40]

      ZEDERKOF D B, MØLLER K B, NIELSEN M M, HALDRUP K, GONZÁLEZ L, MAI S. Resolving femtosecond solvent reorganization dynamics in an iron complex by nonadiabatic dynamics simulations[J]. J. Am. Chem. Soc., 2022, 144(28): 12861-12873  doi: 10.1021/jacs.2c04505

    41. [41]

      SCHMID L, CHÁBERA P, RÜTER I, PRESCIMONE A, MEYER F, YARTSEV A, PERSSON P, WENGER O S. Borylation in the second coordination sphere of Fe(Ⅱ) cyanido complexes and its impact on their electronic structures and excited-state dynamics[J]. Inorg. Chem., 2022, 61(40): 15853-15863  doi: 10.1021/acs.inorgchem.2c01667

    42. [42]

      WEGEBERG C, HÄUSSINGER D, KUPFER S, WENGER O S. Controlling the photophysical properties of a series of isostructural d6 complexes based on Cr(0), Mn(Ⅰ), and Fe(Ⅱ)[J]. J. Am. Chem. Soc., 2024, 146(7): 4605-4619  doi: 10.1021/jacs.3c11580

    43. [43]

      LIU Y Z, HARLANG T, CANTON S E, CHÁBERA P, SUÁREZ-ALCÁNTARA K, FLECKHAUS A, VITHANAGE D A, GÖRANSSON E, CORANI A, LOMOTH R, SUNDSTRÖM V, WÄRNMARK K. Towards longer-lived metal-to-ligand charge transfer states of iron(Ⅱ) complexes: An N-heterocyclic carbene approach[J]. Chem. Commun., 2013, 49(57): 6412-6414  doi: 10.1039/c3cc43833c

    44. [44]

      HARLANG T C B, LIU Y Z, GORDIVSKA O, FREDIN L A, PONSECA C S, HUANG P, CHÁBERA P, KJAER K S, MATEOS H, UHLIG J, LOMOTH R, WALLENBERG R, STYRING S, PERSSON P, SUNDSTRÖM V, WÄRNMARK K. Iron sensitizer converts light to electrons with 92% yield[J]. Nat. Chem., 2015, 7(11): 883-889  doi: 10.1038/nchem.2365

    45. [45]

      DUCHANOIS T, ETIENNE T, CEBRIÁN C, LIU L, MONARI A, BELEY M, ASSFELD X, HAACKE S, GROS P C. An iron-based photosensitizer with extended excited-state lifetime: Photophysical and photovoltaic properties[J]. Eur. J. Inorg. Chem., 2015(14), 2469-2477

    46. [46]

      LIU L, DUCHANOIS T, ETIENNE T, MONARI A, BELEY M, ASSFELD X, HAACKE S, GROS P C. A new record excited state 3MLCT lifetime for metalorganic iron(Ⅱ) complexes[J]. Phys. Chem. Chem. Phys., 2016, 18(18): 12550-12556  doi: 10.1039/C6CP01418F

    47. [47]

      REUTER T, KRUSE A, SCHOCH R, LOCHBRUNNER S, BAUER M, HEINZE K. Higher MLCT lifetime of carbene iron(Ⅱ) complexes by chelate ring expansion[J]. Chem. Commun., 2021, 57(61): 7541-7544  doi: 10.1039/D1CC02173G

    48. [48]

      DIERKS P, PÄPCKE A, BOKAREVA O S, ALTENBURGER B, REUTER T, HEINZE K, KÜHN O, LOCHBRUNNER S, BAUER M. Ground- and excited-state properties of iron(Ⅱ) complexes linked to organic chromophores[J]. Inorg. Chem., 2020, 59(20): 14746-14761  doi: 10.1021/acs.inorgchem.0c02039

    49. [49]

      DARARI M, DOMENICHINI E, FRANCÉS‑MONERRIS A, CEBRIÁN C, MAGRA K, BELEY M, PASTORE M, MONARI A, ASSFELD X, HAACKE S, GROS P C. Iron(Ⅱ) complexes with diazinyl-NHC ligands: Impact of π-deficiency of the azine core on photophysical properties[J]. Dalton Trans., 2019, 48(29): 10915-10926  doi: 10.1039/C9DT01731C

    50. [50]

      JIANG T, BAI Y S, ZHANG P, HAN Q W, MITZI D B, THERIEN M J. Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption[J]. Proc. Natl. Acad. Sci., 2020, 117(34): 20430-20437  doi: 10.1073/pnas.2009996117

    51. [51]

      WITAS K, NAIR S S, MAISURADZE T, ZEDLER L, SCHMIDT H, GARCIAP P, REIN A S J, BOLTER T, RAU S, KUPFER S, DIETZEK-IVANSIC B, SORSCHE D U. Beyond the first coordination sphere-manipulating the excited-state landscape in iron(Ⅱ) chromophores with protons[J]. J. Am. Chem. Soc., 2024, 146(29): 19710-19719  doi: 10.1021/jacs.4c00552

    52. [52]

      CHÁBERA P, KJAER K S, PRAKASH O, HONARFAR A, LIU Y, FREDIN L A, HARLANG T C B, LIDIN S, UHLIG J, SUNDSTRÖM V, LOMOTH R, PERSSON P, WÄRNMARK K. Fe(Ⅱ) hexa N-heterocyclic carbene complex with a 528 ps metal-to-ligand charge-transfer excited-state lifetime[J]. J. Phys. Chem. Lett., 2018, 9(3): 459-463  doi: 10.1021/acs.jpclett.7b02962

    53. [53]

      LIU Y, KJÆR K S, FREDIN L A, CHÁBERA P, HARLANG T, CANTON S E, LIDIN S, ZHANG J, LOMOTH R, BERGQUIST K E, PERSSON P, WÄRNMARK K, SUNDSTRÖM V. A heteroleptic ferrous complex with mesoionic bis[1, 2, 3-triazol-5-ylidene] ligands: taming the MLCT excited state of iron(Ⅱ)[J]. Chem. ‒Eur. J., 2015, 21(9): 3628-3639  doi: 10.1002/chem.201405184

    54. [54]

      TATSUNO H, KJÆR K S, KUNNUS K, HARLANG T C B, TIMM C, GUO M, CHÀBERA P, FREDIN L A, HARTSOCK R W, REINHARD M E, KOROIDOV S, LI L, CORDONES A A, GORDIVSKA O, PRAKASH O, LIU Y, LAURSEN M G, BIASIN E, HANSEN F B, VESTER P, CHRISTENSEN M, HALDRUP K, NÉMETH Z, SZEMES D S, BAJNÓCZI É, VANKÓ G, VAN DRIEL T B, ALONSO-MORI R, GLOWNIA J M, NELSON S, SIKORSKI M, LEMKE H T, SOKARAS D, CANTON S E, DOHN A O, MØLLER K B, NIELSEN M M, GAFFNEY K J, WÄRNMARK K, SUNDSTRÖM V, PERSSON P, UHLIG J. Hot branching dynamics in a light-harvesting iron carbene complex revealed by ultrafast X-ray emission spectroscopy[J]. Angew. Chem. ‒Int. Edit., 2020, 59(1): 364-372  doi: 10.1002/anie.201908065

    55. [55]

      DIERKS P, KRUSE A, BOKAREVA O S, ALMARRI M J, KALMBACH J, BALTRUN M, NEUBA A, SCHOCH R, HOHLOCH S, HEINZE K, SEITZ M, KÜHN O, LOCHBRUNNER S, MATTHIAS B. Distinct photodynamics of κ-N and κ-C pseudoisomeric iron(Ⅱ) complexes[J]. Chem. Commun., 2021, 57(54): 6640-6643  doi: 10.1039/D1CC01716K

    56. [56]

      BRAUN J D, LOZADA I B, KOLODZIEJ C, BURDA C, NEWMAN K M E, VAN LIEROP J, DAVIS R L, HERBERT D E. Iron(Ⅱ) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes[J]. Nat. Chem., 2019, 11(12): 1144-1150  doi: 10.1038/s41557-019-0357-z

    57. [57]

      KJÆR K S, KAUL N, PRAKASH O, CHÁBERA P, ROSEMANN N W, HONARFAR A, GORDIVSKA O, FREDIN L A, BERGQUIST K E, HÄGGSTRÖM L, ERICSSON T, LINDH L, YARTSEV A, STYRING S, HUANG P, UHLIG J, BENDIX J, STRAND D, SUNDSTRÖM V, PRESSON P, LOMOTH R, WÄRNMARK K. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime[J]. Science, 2019, 363(6424): 249-253  doi: 10.1126/science.aau7160

    58. [58]

      KAUL N, LOMOTH R. The carbene cannibal: Photoinduced symmetry-breaking charge separation in an Fe(Ⅲ) N-Heterocyclic Carbene[J]. J. Am. Chem. Soc., 2021, 143(29): 10816-10821  doi: 10.1021/jacs.1c03770

    59. [59]

      ZHANG M, JOHNSON C E, ILIC A, SCHWARZ J, JOHANSSON M B, LOMOTH R. High-efficiency photoinduced charge separation in Fe(Ⅲ) carbene thin films[J]. J. Am. Chem. Soc., 2023, 145(35): 19171-19176  doi: 10.1021/jacs.3c05404

    60. [60]

      AYDOGAN A, BANGLE R E, CADRANEL A, TURLINGTON M D, CONROY D T, CAUËT E, SINGLETON M L, MEYER G J, SAMPAIO R N, ELIAS B, TROIAN-GAUTIER L. Accessing photoredox transformations with an iron(Ⅲ) photosensitizer and green light[J]. J. Am. Chem. Soc., 2021, 143(38): 15661-15673  doi: 10.1021/jacs.1c06081

    61. [61]

      ILIC A, SCHWARZ J, JOHNSON C, GROOT L H M, KAUFHOLD S, LOMOTH R, WÄRNMARK K. Photoredox catalysis via consecutive 2LMCT- and 3MLCT-excitation of an Fe(Ⅲ)/Fe(Ⅱ)-N-heterocyclic carbene complex[J]. Chem. Sci., 2022, 13(32): 9165-9175  doi: 10.1039/D2SC02122F

    62. [62]

      GROOT L H M, ILIC A, SCHWARZ J, WÄRNMARK K. Iron photoredox catalysis—past, present, and future[J]. J. Am. Chem. Soc., 2023, 145(17): 9369-9388  doi: 10.1021/jacs.3c01000

    63. [63]

      YE Y, GARRIDO B P, WELLAUER J, CRUZ C M, LESCOUËZEC R, WENGER O S, HERRERA J, M JIMÉNEZ J R. Luminescence and excited-state reactivity in a heteroleptic tricyanido Fe(Ⅲ) complex[J]. J. Am. Chem. Soc., 2024, 146(1): 954-960  doi: 10.1021/jacs.3c11517

    64. [64]

      STEUBE J, KRUSE A, BOKAREVA O S, REUTER T, DEMESHKO S, SCHOCH R, ARGÜELLO C M A, KRISHNA A, HOHLOCH S, MEYER F, HEINZE K, KÜHN O, LOCHBRUNNER S, BAUER M. Janus-type emission from a cyclometalated iron(Ⅲ) complex[J]. Nat. Chem., 2023, 15(4): 468-474  doi: 10.1038/s41557-023-01137-w

    65. [65]

      WELLAUER J, ZIEREISEN F, SINHA N, PRESCIMONE A, VELIĆ A, MEYER F, WENGER O S. Iron(Ⅲ) carbene complexes with tunable excited state energies for photoredox and upconversion[J]. J. Am. Chem. Soc., 2024, 146: 11299-11318

    66. [66]

      GUALANDI A, MARCHINI M, MENGOZZI L, NATALI M, LUCARINI M, CERONI P, COZZI P G. Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br2 catalyst and visible light[J]. ACS Catal., 2015, 5(10): 5927-5931  doi: 10.1021/acscatal.5b01573

    67. [67]

      PARISIEN-COLLETTE S, HERNANDEZ P A C, COLLINS S K. Photochemical synthesis of carbazoles using an[Fe(phen)3](NTf2)2/O2 catalyst system: Catalysis toward sustainability[J]. Org. Lett., 2016, 18(19): 4994-4997  doi: 10.1021/acs.orglett.6b02456

    68. [68]

      LINDROTH R, ONDREJKOVÁ A, WALLENTIN C J. Visible-light mediated oxidative fragmentation of ethers and acetals by means of Fe(Ⅲ) catalysis[J]. Org. Lett., 2022, 24(8): 1662-1667  doi: 10.1021/acs.orglett.2c00231

    69. [69]

      AYDOGEN A, BANGLE R E, CADRANEL A, TURLINGTON M D, CONROY D T, CAUËT, SINGLETON M L, MEYER G J, SAMPAIO R N, ELIAS B, TROIAN-GAUTIER L. Accessing photoredox transformations with an iron(Ⅲ) photosensitizer and green light[J]. J. Am. Chem. Soc., 2021, 143(38): 15661-15673  doi: 10.1021/jacs.1c06081

    70. [70]

      JANG Y J, AN H, CHOI S, HONG J, LEE S H, AHN K H, YOU Y, KANG E J. Green-light-driven Fe(Ⅲ)(btz)3 photocatalysis in the radical cationic[4+2] cycloaddition reaction[J]. Org. Lett., 2022, 24(24): 4479-4484  doi: 10.1021/acs.orglett.2c01779

    71. [71]

      REDDY M A, MARCHINI E, CABANES V D, ARGAZZI R, PASTORE M, CARAMORI S, GROS P C. Record power conversion efficiencies for iron(Ⅱ)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization[J]. J. Mater. Chem. A, 2021, 9(6): 3540-3554  doi: 10.1039/D0TA10841C

    72. [72]

      MARRI A R, MARCHINI E, CABANES V D, ARGAZZI R, PASTORE M, CARAMORI S, BIGNOZZI C A, GROS P C. A Series of iron(Ⅱ)-NHC sensitizers with remarkable power conversion efficiency in photoelectrochemical cells[J]. Chem. ‒Eur. J., 2021, 27(65): 16260-16269  doi: 10.1002/chem.202103178

    73. [73]

      LINDH L, GORDIVSKA O, PERSSON S, MICHAELS H, FAN H, CHÁBERA P, ROSEMANN N W, GUPTA A K, BENESPERI I, UHLIG J, PRAKASH O, SHEIBANI E, KJAER K S, BOSCHLOO G, YARTSEV A, FREITAG M, LOMOTH R, PERSSON P, WÄRNMARK K. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality[J]. Chem. Sci., 2021, 12(48): 16035-16053  doi: 10.1039/D1SC02963K

    74. [74]

      PASTORE M, CARAMORI S, GROS P C. Iron-sensitized solar cells (FeSSCs)[J]. Acc. Chem. Res., 2024, 57(4): 439-449

    75. [75]

      WANG C, REICHENAUER F, KITZMANN W R, KERZIG C, HEINZE K, RESCH G U. Efficient triplet-triplet annihilation upconversion sensitized by a chromium(Ⅲ) complex via an underexplored energy transfer mechanism[J]. Angew. Chem. ‒Int. Edit., 2022, 61(27): e202202238  doi: 10.1002/anie.202202238

    76. [76]

      WEI Y X, AN K B, XU X S, YE Z Y, YIN X J, CAO X S, YANG C L. Π-Radical photosensitizer for highly efficient and stable near-infrared photon upconversion[J]. Adv. Opt. Mater., 2024, 12(6): 2301134  doi: 10.1002/adom.202301134

    77. [77]

      WENGER O S. A bright future for photosensitizers[J]. Nat. Chem., 2020, 12(4): 323-324  doi: 10.1038/s41557-020-0448-x

    78. [78]

      JULIÁ F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: An emerging tool for sustainable organic synthesis[J]. ChemCatChem, 2022, 14(19): e202200916  doi: 10.1002/cctc.202200916

    79. [79]

      SHI S Y, JUNG M C, COBURN C, TADLE A, SYLVINSON M R D, DJUROVICH P I, FORREST S R, THOMPSON M E. Highly efficient photo- and electroluminescence from two-coordinate Cu(Ⅰ) complexes featuring nonconventional n-heterocyclic carbenes[J]. J. Am. Chem. Soc., 2019, 141(8): 3576-3588  doi: 10.1021/jacs.8b12397

    80. [80]

      KÜBLER J A, PFUND B, WENGER O S. Zinc(Ⅱ) complexes with triplet charge-transfer excited states enabling energy-transfer catalysis, photoinduced electron transfer, and upconversion[J]. J. Am. Chem. Soc., 2022, 2(10): 2367-2380

    81. [81]

      KITZMANN W R, MOLL J, HEINZE K. Spin-flip luminescence[J]. Photochem. Photobio. Sci., 2022, 21(7): 1309-1331  doi: 10.1007/s43630-022-00186-3

    82. [82]

      YING A, AI Y H, YANG C L, GONG S L. Aggregation-dependent circularly polarized luminescence and thermally activated delayed fluorescence from chiral carbene-Cu(Ⅰ)-amide enantiomers[J]. Angew. Chem. ‒Int. Edit., 2022, 61(45): e202210490  doi: 10.1002/anie.202210490

    83. [83]

      MAO Y, CHEN Z H, SUN T K, CUI W Y, CHENG P, SHI W. Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite[J]. Chin. J. Struct. Chem., 2024, 43(9): 100353  doi: 10.1016/j.cjsc.2024.100353

    84. [84]

      D′ACCRISCIO F, BORJA P, SAFFON M N, FUSTIER B M, MÉZAILLES N, NEBRA N. C—H bond trifluoromethylation of arenes enabled by a robust, high-valent nickel􀃯 complex[J]. Angew. Chem. ‒Int. Edit., 2017, 56(42): 12898-12902  doi: 10.1002/anie.201706237

  • 加载中
    1. [1]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    9. [9]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(31)
  • Abstract views(823)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return