Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing
- Corresponding author: Na CHEN, chenna0804@whu.edu.cn Quan YUAN, yuanquan@whu.edu.cn
Citation:
Wei HE, Jing XI, Tianpei HE, Na CHEN, Quan YUAN. Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 35-44.
doi:
10.11862/CJIC.20240364
LUO S S, LIN P P, NIEH L Y, LIAO G B, TANG P W, CHEN C, LIAO J C. A cell-free self-replenishing CO2-fixing system[J]. Nat. Catal., 2022, 5: 154-162
doi: 10.1038/s41929-022-00746-x
HU G P, LI Y, YE C, LIU L M, CHEN X L. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends Biotechnol., 2019, 37: 532-547
doi: 10.1016/j.tibtech.2018.10.008
CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, AZAM F, BAKKEN L R, BAYLIS M, BEHRENFELD M J, BOETIUS A, BOYD P W, CLASSEN A T, CROWTHER T W, DANOVARO R, FOREMAN C M, HUISMAN J, HUTCHINS D A, JANSSON J K, KARL D M, KOSKELLA B, WELCH D B M, MARTINY J B H, MORAN M A, ORPHAN V J, REAY D S, REMAIS J V, RICH V I, SINGH B K, STEIN L Y, STEWART F J, SULLIVAN M B, VAN OPPEN M J H, WEAVER S C, WEBB E A, WEBSTER N S. Scientists′ warning to humanity: Microorganisms and climate change[J]. Nat. Rev. Microbiol., 2019, 17: 569586
LI D Y, DONG H, CAO X P, WANG W Y, LI C. Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa[J]. Nat. Commun., 2023, 14: 5337
doi: 10.1038/s41467-023-40839-0
WANG Q, KALATHIL S, PORNRUNGROJ C, SAHM C D, REISNER E. Bacteria-photocatalyst sheet for sustainable carbon dioxide utilization[J]. Nat. Catal., 2022, 5: 633-641
doi: 10.1038/s41929-022-00817-z
CLAASSENS N J, SOUSA D Z, DOS SANTOS V A P M, DE VOS W M, VAN DER OOST J. Harnessing the power of microbial autotrophy[J]. Nat. Rev. Microbiol., 2016, 14: 692-706
doi: 10.1038/nrmicro.2016.130
FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chem. Soc. Rev., 2020, 49: 4926-4952
doi: 10.1039/C9CS00496C
ZHENG T T, ZHANG M L, WU L H, GUO S Y, LIU X J, ZHAO J K, XUE W Q, LI J W, LIU C X, LI X, JIANG Q, BAO J, ZENG J, YU T, XIA C. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nat. Catal., 2022, 5: 388-396
doi: 10.1038/s41929-022-00775-6
ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nat. Biotechnol., 2009, 27: 12
ZHOU J, ZHANG F L, MENG H K, ZHANG Y P, LI Y. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria[J]. Metab. Eng., 2016, 38: 217-227
doi: 10.1016/j.ymben.2016.08.002
CHEN P F, LIU X, GU C H, ZHONG P Y, SONG N, LI M B, DAI Z Q, FANG X Q, LIU Z M, ZHANG J F, TANG R K, FAN S W, LIN X F. A plant-derived natural photosynthetic system for improving cell anabolism[J]. Nature, 2022, 612: 546-554
doi: 10.1038/s41586-022-05499-y
YU T, LIU Q L, WANG X, LIU X J, CHEN Y, NIELSEN J. Metabolic reconfiguration enables synthetic reductive metabolism in yeast[J]. Nat. Metab., 2022, 4: 1551-1559
doi: 10.1038/s42255-022-00654-1
WANG J, CHEN N, BIAN G K, MU X, DU N, WANG W J, MA C G, FU S, HUANG B L, LIU T G, YANG Y B, YUAN Q. Solar-driven overproduction of biofuels in microorganisms[J]. Angew. Chem. ‒Int. Edit., 2022, 61: e202207132
doi: 10.1002/anie.202207132
HU A D, FU T, REN G P, ZHUANG M H, YUAN W Q, ZHONG S N, ZHOU S G. Sustained biotic-abiotic hybrids methanogenesis enabled using metal-free black phosphorus/carbon nitride[J]. Front. Microbiol., 2022, 13: 957066
doi: 10.3389/fmicb.2022.957066
WU D, ZHANG W M, FU B H, ZHANG Z H. Living intracellular inorganic-microorganism biohybrid system for efficient solar hydrogen generation[J]. Joule, 2023, 6: 2293-2303
CESTELLOS-BLANCO S, ZHANG H, KIM J M, SHEN Y X, YANG P D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nat. Catal., 2020, 3: 245-255
doi: 10.1038/s41929-020-0428-y
WANG J, CHEN N, WANG W J, LI Z H, HUANG B L, YANG Y B, YUAN Q. Room-temperature persistent luminescence in metal halide perovskite nanocrystals for solar-driven CO2 bioreduction[J]. CCS Chem., 2023, 5: 164
doi: 10.31635/ccschem.022.202101694
LIN Y L, SHI J Y, FENG W, YUE J P, LUO Y Q, CHEN S, YANG B, JIANG Y W, HU H C, ZHOU C K, SHI F Y, PROMINSKI A, TALAPIN D V, XIONG W, GAO X, TIAN B. Periplasmic biomineralization for semi-artificial photosynthesis[J]. Sci. Adv., 2023, 9: eadg5858
doi: 10.1126/sciadv.adg5858
RODRIGUES R M, GUAN X, INIGUEZ J A, ESTABROOK D A, CHAPMAN J O, HUANG S Y, SLETTEN E M, LIU C. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nat. Catal., 2019, 2: 404-407
GUAN X, HU X C, ATALLAH T L, XIE Y C, LU S T, CAO B C, SUN J W, WU K, HUANG Y, DUAN X F, CARAM J R, YU Y, PARK J O, LIU C, ERSAN S. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot-bacteria hybrids[J]. Nat. Catal., 2022, 5: 1019-1029
doi: 10.1038/s41929-022-00867-3
GUO J L, SUASTEGUI M, SAKIMOTO K K, MOODY V M, XIAO G, NOCERA D G, JOSHI N S. Light‑driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362: 813‑816
doi: 10.1126/science.aat9777
YE J, WANG C, GAO C, FU T, YANG C H, REN G P, LU J, ZHOU S G, XIONG Y J. Solar‑driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nat. Commun., 2023, 13: 6612
CHEN N, DU N, SHEN R C, HE T P, XI J, TAN J, BIAN G K, YANG Y B, LIU T G, TAN W H, YU L L, YUAN Q. Redox signaling‑driven modulation of microbial biosynthesis and biocatalysis[J]. Nat. Commun., 2023, 14: 6800
doi: 10.1038/s41467-023-42561-3
CHENG J, XIA R X, LI H, CHEN Z, ZHOU X Y, REN X Y, DONG H Q, LIN R C, ZHOU J H. Enhancing extracellular electron transfer of Geobacter sulfurreducens in bioelectrochemical systems using N-doped Fe3O4@carbon dots[J]. ACS Sustain. Chem. Eng., 2022, 10(12): 3935-3950
doi: 10.1021/acssuschemeng.1c08167
YE J, REN G Y, KANG L, ZHANG Y Y, LIU X, ZHOU S G, HE Z. Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion[J]. iScience, 2020, 23(7): 101287
doi: 10.1016/j.isci.2020.101287
YE J, CHEN Y P, GAO C, WANG C, HU A D, DONG G W, CHEN Z, ZHOU S G, XIONG Y J. Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic-abiotic hybrid photocatalytic system[J]. Angew. Chem. Int. Edit., 2022, 61(12): e202213244
WANG J, XUAN Y M, ZHANG K. Nickel doping as an effective strategy to promote separation of photogenerated charge carriers for efficient solar-fuel production[J]. Catal. Sci. Technol., 2021, 11: 4012-4015
doi: 10.1039/D1CY00483B
DING Y, BERTRAM J R, NAGPAL P. Utilizing atmospheric carbon dioxide and sunlight in graphene quantum dot-based nano-biohybrid organisms for making carbon negative and carbon-neutral products[J]. ACS Appl. Mater. Interfaces, 2023, 15: 53464-53475
doi: 10.1021/acsami.3c12524
HU A D, YE J, REN G P, QI Y, CHEN Y P, ZHOU S G. Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield[J]. Angew. Chem. ‒Int. Edit., 2022, 61(35): e202206508
doi: 10.1002/anie.202206508
SALEH T A. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environ. Technol. Innov., 2020, 20: 101067
doi: 10.1016/j.eti.2020.101067
LEAD J R, BATLEY G E, ALVAREZ P J J, CROTEAU M N, HANDY R D, MCLAUGHLIN M J, JUDY J D, SCHIRMER K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review[J]. Environ. Toxicol. Chem., 2018, 37(8): 2029-2063
doi: 10.1002/etc.4147
TANG Y A, HU J, YANG X L, XU H B. Biotoxicity of cadmium-based quantum dots and the mechanisms[J]. Prog. Chem., 2014, 26(10): 1731-1740
LI X M, CHEN N, SU Y Y, HE Y, FAN C H, HUANG Q. Cytotoxicity of cadmium-based quantum dots[J]. Chin. Sci. Bull., 2013, 58(15): 1393-1402
CHEN N, HE Y, SU Y Y, LI X M, HUANG Q, WANG H F, ZHANG X Z, TAI R Z, FAN C H. The cytotoxicity of cadmium-based quantum dots[J]. Biomaterials, 2012, 33(5): 1238-1244
doi: 10.1016/j.biomaterials.2011.10.070
LIU G Y, GAO F, ZHANG H W, WANG L, GAO C, XIONG Y J. Biosynthetic CdS-thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation[J]. Nano Res., 2023, 16(4): 4531-4538
doi: 10.1007/s12274-021-3883-0
WANG B, JIANG Z, YU J C, WANG J, WONG P K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301
doi: 10.1039/C9NR02896J
JI X, ZHANG H, LIU H, YAGHI O M, YANG P D. Cytoprotective metal‑organic frameworks for anaerobic bacteria[J]. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 10682-10587
SAKIMOTO K K, KORNIENKO N, CESTELLOS-BLANCO S, LIM J, LIU C, YANG P D. Physical biology of the materials-microorganism interface[J]. J. Am. Chem. Soc., 2018, 140(6): 1978-1985
doi: 10.1021/jacs.7b11135
SHI L, DONG H L, REGUERA G, BEYENAL H, LU A H, LIU J, YU H Q, FREDRICKSON J K. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nat. Rev. Microbiol., 2016, 14(10): 651-662
doi: 10.1038/nrmicro.2016.93
KORNIENKO N, SAKIMOTO K K, HERLIHY D M, NGUYEN S C, ALIVISATOS A P, HARRIS C B, SCHWARTZBERG A, YANG P D. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(42): 11750-11755
doi: 10.1073/pnas.1610554113
FUKUSHIMA T, GUPTA S, RAD B, CORNEJO J A, PETZOLD C J, CHAN L J G, MIZRAHI R A, RALSTON C Y, AJO-FRANKLIN C M. The molecular basis for binding of an electron transfer protein to a metal oxide surface[J]. J. Am. Chem. Soc., 2017, 139(36): 12647-12654
doi: 10.1021/jacs.7b06560
TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: Among autotrophs and mediated by surfaces[J]. Trends Biotechnol., 2017, 35(4): 360-371
doi: 10.1016/j.tibtech.2016.10.004
LV X X, HUANG W C, GAO Y, CHEN R, CHEN X W, LIU D Q, WENG L, HE L C, LIU S Q. Boosting solar hydrogen production via electrostatic interaction mediated E. coli-TiO2-x biohybrid system[J]. Nano Res., 2024, 17: 5390-5398
doi: 10.1007/s12274-024-6432-9
XIA R X, CHENG J, CHEN Z, ZHANG Z, ZHOU X Y, ZHOU J H. Co‑NC@Co‑NP hierarchical nanoforest steering charge exchange efficiency at biotic‑abiotic interface for microbial electrochemical carbon reduction[J]. Sci. Total Environ., 2023, 904: 166793
doi: 10.1016/j.scitotenv.2023.166793
SU Y D, CESTELLOS-BLANCO S, KIM J M, SHEN Y X, KONG Q, LU D L, LIU C, ZHANG H, CAO Y H, YANG P D. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811
doi: 10.1016/j.joule.2020.03.001
ZHANG H, LIU H, TIAN Z Q, LU D, YU Y, CESTELLOS-BLANCO S, SAKIMOTO K K, YANG P D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nat. Nanotechnol., 2018, 13(10): 900-905
doi: 10.1038/s41565-018-0267-z
WEN N, JIANG Q Q, CUI J T, ZHU H M, JI B T, LIU D Y. Intracellular InP quantum dots facilitate the conversion of carbon dioxide to value‑added chemicals in non-photosynthetic bacteria[J]. Nano Today, 2022, 47: 166793
LI D Y, YAO S Y, CAO X P, ZHANG Y J, WANG W Y, LI C. Enhancing cyanobacterial photosynthetic carbon fixation via quenching reactive oxygen species by intracellular gold nanoparticles[J]. ACS Sustain. Chem. Eng., 2023, 11(30): 11140-11148
doi: 10.1021/acssuschemeng.3c01559
SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77
doi: 10.1126/science.aad3317
LUO B, WANG Y Z, LI D, SHEN H, XU L X, FANG Z, XIA Z, REN J, SHI W, YONG Y C. A periplasmic photosensitized biohybrid system for solar hydrogen production[J]. Adv. Energy Mater., 2021, 11(19): 2100256
doi: 10.1002/aenm.202100256
NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197
doi: 10.1016/j.cell.2016.02.004
PI S S, YANG W J, FENG W, YANG R J, CHAO W X, CHENG W B, CUI L, LI Z D, LIN Y L, REN N Q. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids[J]. Nat. Sustain., 2023, 6(12): 1673-1684
doi: 10.1038/s41893-023-01233-2
TU W M, XU J B, THOMPSON I P, HUANG W E. Engineering artificial photosynthesis based on rhodopsin for CO2 fixation[J]. Nat. Commun., 2023, 14(1): 8012
doi: 10.1038/s41467-023-43524-4
LI H, YU X X, QIN Y, JIANG T, WANG J J, CAI Z Q, XU J Y, GE Y, SUN H C, QI Z H. Synergistic approaches for enhanced light-driven hydrogen production: A membrane-anchoring protein-engineered biohybrid system with dual photosensitizers strategy[J]. ACS Mater. Lett., 2024, 6(4): 1418-1428
doi: 10.1021/acsmaterialslett.4c00063
HU G P, LI Z H, MA D L, YE C, ZHANG L P, GAO C, LIU L M, CHEN X L. Light-driven CO2 sequestration in Escherichia Coli to achieve theoretical yield of chemicals[J]. Nat. Catal., 2021, 4(5): 395-406
doi: 10.1038/s41929-021-00606-0
GAN Y M, CHAI T T, ZHANG J, GAO C, SONG W, WU J, LIU L M, CHEN X L. Light-driven CO2 utilization for chemical production in bacterium biohybrids[J]. Chin. J. Catal., 2024, 60: 294-303
doi: 10.1016/S1872-2067(23)64643-1
KIM J, CESTELLOS-BLANCO S, SHEN Y, CAI R, YANG P D. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts[J]. Nano Lett., 2022, 22(13): 5503-5509
doi: 10.1021/acs.nanolett.2c01576
GUAN X, XIE Y C, LIU C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids[J]. Nat. Catal., 2024, 7: 475-482
doi: 10.1038/s41929-024-01151-2
CHEN N, DU N, WANG W J, LIU T G, YUAN Q, YANG Y B. Real-time monitoring of dynamic microbial Fe respiration metabolism with a living cell-compatible electron-sensing probe[J]. Angew. Chem. ‒Int. Edit., 2022, 61: e202115572
doi: 10.1002/anie.202115572
CHEN N, ZHANG X M, XI J, YANG Y B, YUAN Q. Recent advances of microbial metabolism analysis: From metabolic molecules to environments[J]. Sci. China Chem., 2023, 66: 2941
CHEN N, CHENG D, HE T P, YUAN Q. Real-time monitoring of dynamic chemical processes in microbial metabolism with optical sensor[J]. Chin. J. Chem., 2023, 41: 1836-1840
doi: 10.1002/cjoc.202200839
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010