Citation: Shiyi WANG, Chaolong CHEN, Xiangjian KONG, Lansun ZHENG, Lasheng LONG. Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342 shu

Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine

Figures(7)

  • In this study, we utilized a polynuclear lanthanide complex [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH (Ce10) constructed with acetylacetone (Hacac) as a Lewis acid catalyst to achieve an efficient borohydride reduction of amides, with yields ranging from 50% to 99%. Additionally, this method was successfully applied for the gram-scale synthesis of the antidepressant drug phenylethylamine. The catalytic mechanism was investigated using NMR and single-crystal X-ray diffraction analysis.
  • 加载中
    1. [1]

      CAI L X, LI S C, YAN D N, ZHOU L P, GUO F, SUN Q F. Watersoluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis[J]. J. Am. Chem. Soc., 2018,140(14):4869-4876. doi: 10.1021/jacs.8b00394

    2. [2]

      HADLINGTON T J, HERMANN M, FRENKING G, JONES C. Low coordinate germanium (Ⅱ) and Tin (Ⅱ) hydride complexes: Efficient catalysts for the hydroboration of carbonyl compounds[J]. J. Am. Chem. Soc., 2014,136(8):3028-3031. doi: 10.1021/ja5006477

    3. [3]

      YAO W B, WANG J L, ZHONG A G, WANG S L, SHAO Y L. Transition-metal-free catalytic hydroboration reduction of amides to amines[J]. Org. Chem. Front., 2020,7(21):3515-3520. doi: 10.1039/D0QO01092H

    4. [4]

      CHAUDHARI M B, GNANAPRAKASAM B. Recent advances in the metal-catalyzed activation of amide bonds[J]. Chem. Asian J., 2019,14(1):76-93. doi: 10.1002/asia.201801317

    5. [5]

      HANADA S, TSUTSUMI E, MOTOYAMA Y, NAGASHIMA H. Practical access to amines by platinum catalyzed reduction of carboxamides with hydrosilanes: Synergy of dual Si-H groups leads to high efficiency and selectivity[J]. J. Am. Chem. Soc., 2009,131(41):15032-15040. doi: 10.1021/ja9055307

    6. [6]

      BISAI M K, GOUR K, DAS T, VANKA K, SEN S S. Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides[J]. Dalton Trans., 2021,50(7):2354-2358. doi: 10.1039/D1DT00364J

    7. [7]

      SUNADA Y, KAWAKAMI H, IMAOKA T, MOTOYAMA Y, NAGASHIMA H. Hydrosilane reduction of tertiary carboxamides by iron carbonyl catalysts[J]. Angew. Chem.-Int. Edit., 2009,48(50):9511-9514. doi: 10.1002/anie.200905025

    8. [8]

      DAS S, ADDIS D, ZHOU S, JUNGE K, BELLER M. Zinccatalyzed reduction of amides: Unprecedented selectivity and functional group tolerance[J]. J. Am. Chem. Soc., 2010,132(6):1770-1771. doi: 10.1021/ja910083q

    9. [9]

      CHENG C, BROOKHART M. Iridium-catalyzed reduction of second-ary amides to secondary amines and imines by diethylsilane[J]. J. Am. Chem. Soc., 2012,134(28):11304-11307. doi: 10.1021/ja304547s

    10. [10]

      DAS S, WENDT B, MOLLER K, JUNGE K, BELLER M. Two iron catalysts are better than one: A general and convenient reduction of aromatic and aliphatic primary amides[J]. Angew. Chem.-Int. Edit., 2012,51(7):1662-1666. doi: 10.1002/anie.201108155

    11. [11]

      LI B, SORTAIS J B, DARCEL C. Unexpected selectivity in rutheniumcatalyzed hydrosilylation of primary amides: Synthesis of secondary amines[J]. Chem. Commun., 2013,49(35):3691-3693. doi: 10.1039/c3cc39149c

    12. [12]

      REEVES J T, TAN Z L, MARSINI M A, HAN Z S, XU Y B, REEVES D C, LEE H, LU B Z, SENANAYAKE C H. A practical procedure for reduction of primary, secondary and tertiary amides to amines[J]. Adv. Synth. Catal., 2013,355(1):47-52. doi: 10.1002/adsc.201200835

    13. [13]

      BLONDIAUX E, CANTAT T. Efficient metal-free hydrositylation of tertiary, secondary and primary amides to amines[J]. Chem. Commun., 2014,50(66):9349-9352. doi: 10.1039/C4CC02894E

    14. [14]

      SIMMONS B J, HOFFMANN M, HWANG J, JACKL M K, GARG N K. Nickel-catalyzed reduction of secondary and tertiary amides[J]. Org Lett., 2017,19(7):1910-1913. doi: 10.1021/acs.orglett.7b00683

    15. [15]

      PAN Y X, LUO Z L, XU X, ZHAO H Q, HAN J H, XU L J, FAN Q H, XIAO J L. Ru-catalyzed deoxygenative transfer hydrogenation of amides to amines with formic acid/triethylamine[J]. Adv. Synth. Catal., 2019,361(16):3800-3806. doi: 10.1002/adsc.201900406

    16. [16]

      TINNIS F, VOLKOV A, SLAGBRAND T, ADOLFSSON H. Chemoselective reduction of tertiary amides under thermal control: Formation of either aldehydes or amines[J]. Angew. Chem.-Int. Edit., 2016,55(14):4562-4566. doi: 10.1002/anie.201600097

    17. [17]

      ZHOU S L, JUNGR K, ADDIS D, DAS S, BELLER M. A convenient and general iron-catalyzed reduction of amides to amines[J]. Angew. Chem.-Int. Edit., 2009,48(50):9507-9510. doi: 10.1002/anie.200904677

    18. [18]

      DAS S, JOIN B, JUNGE K, BELLER M. A general and selective copper-catalyzed reduction of secondary amides[J]. Chem. Commun., 2012,48(21):2683-2685. doi: 10.1039/c2cc17209g

    19. [19]

      KOVALENKO O O, VOLKOV A, ADOLFSSON H. Mild and selective Et2Zn catalyzed reduction of tertiary amides under hydrosilylation conditions[J]. Org. Lett., 2015,17(3):446-449. doi: 10.1021/ol503430t

    20. [20]

      DAS H S, DAS S, DEY K, SINGH B, HARIDASAN R K, DAS A, AHMED J, MANDAL S K. Primary amides to amines or nitriles: A dual role by a single catalyst[J]. Chem. Commun., 2019,55(79):11868-11871. doi: 10.1039/C9CC05856G

    21. [21]

      IGARASHI M, FUCHIKAMI T. Transition-metal complex-catalyzed reduction of amides with hydrosilanes: a facile transformation of amides to amines[J]. Tetrahedron Lett., 2001,42(10):1945-1947. doi: 10.1016/S0040-4039(01)00039-9

    22. [22]

      DAS S, KARMAKAR H, BHATTACHARJEE J, PANDA T K. Aluminium complex as an efficient catalyst for the chemo-selective reduction of amides to amines[J]. Dalton Trans., 2019,48(31):11978-11984. doi: 10.1039/C9DT01806A

    23. [23]

      LEISCHNER T, SUAREZ L A, SPANNENBERG A, JUNGE K, NOVA A, BELLER M. Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: Scope and mechanism[J]. Chem. Sci., 2019,10(45):10566-10576. doi: 10.1039/C9SC03453F

    24. [24]

      ONG D Y, YEN Z H, YOSHII A, IMBERNON J R, TAKITA R, CHIBA S. Controlled reduction of carboxamides to alcohols or amines by zinc hydrides[J]. Angew. Chem.-Int. Edit., 2019,58(15):4992-4997. doi: 10.1002/anie.201900233

    25. [25]

      SORRIBES I, LEMOS S C S, MARTIN S, MAYORAL A, LIMA R C, ANDRES J. Palladium doping of towards a general and selective catalytic hydrogenation of amides to amines and alcohols[J]. Catal. Sci. Technol., 2019,9(24):6965-6976. doi: 10.1039/C9CY02128K

    26. [26]

      SZOSTAK M, SPAIN M, EBERHART A J, PROCTER D J. Highly chemoselective reduction of amides (primary, secondary, tertiary) to alcohols using SmI2/Amine/H2O under mild conditions[J]. J. Am. Chem. Soc., 2014,136(6):2268-2271. doi: 10.1021/ja412578t

    27. [27]

      LAMPLAND N L, HOVEY M, MUKHERJEE D, SADOW A D. Magnesium-catalyzed mild reduction of tertiary and secondary amides to amines[J]. ACS Catal., 2015,5(7):4219-4226. doi: 10.1021/acscatal.5b01038

    28. [28]

      YE P Q, SHAO Y L, YE X Z, ZHANG F J, LI R H, SUN J N, XU B H, CHEN J X. Homoleptic bis (trimethylsilyl) amides of yttrium complexes catalyzed hydroboration reduction of amides to amines[J]. Org. Lett., 2020,22(4):1306-1310. doi: 10.1021/acs.orglett.9b04606

    29. [29]

      BARGER C J, DICKEN R D, WEIDNER V L, MOTTA A, LOHR T L, MARKS T J. La[N (SiMe3)2]3-catalyzed deoxygenative reduction of amides with pinacolborane: Scope and mechanism[J]. J. Am. Chem. Soc., 2020,142(17):8019-8028. doi: 10.1021/jacs.0c02446

    30. [30]

      TAMANG S R, SINGH A, BEDI D, BAZKIAEI A R, WARNER A A, GLOGAU K, McDONALD C, UNRUH D K, FINDLATER M. Polynuclear lanthanide-diketonato clusters for the catalytic hydroboration of carboxamides and esters[J]. Nat. Catal., 2020,3(2):154-162. doi: 10.1038/s41929-019-0405-5

    31. [31]

      WENG Z Z, CHEN C L, YE L W, LONG L S, ZHENG L S, KONG X J. Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides[J]. Sci. China-Chem., 2023,66(2):443-448. doi: 10.1007/s11426-022-1493-y

    32. [32]

      LIU W D, CHEN L Q, QIU Q H, QI M Q, XU H, CHEN C L, LONG L S, ZHENG L S, KONG X J. A mixed valence decanuclear ceriumoxo cluster Ce4Ce6 for efficient photocurrent response[J]. Inorg. Chem. Commun., 2024,159111763. doi: 10.1016/j.inoche.2023.111763

    33. [33]

      BAGE A D, HUNT T A, THOMAS S P. Hidden boron catalysis: Nucleophile-promoted decomposition of HBpin[J]. Org. Lett., 2020,22(11):4107-4112. doi: 10.1021/acs.orglett.0c01168

    34. [34]

      BROWN H C, HEIM P. Diborane as a mild reducing agent for the conversion of primary, secondary, and tertiary amides into the corresponding amines[J]. J. Am. Chem. Soc., 1964,86(17):3566-3567. doi: 10.1021/ja01071a037

    35. [35]

      MULLER F, TRINCADO M, PRIBANIC B, VOGT M, GRUTZMACHER H. Stable BH3 adducts to rhodium amide bonds[J]. J. Organomet. Chem., 2016,821:154-162. doi: 10.1016/j.jorganchem.2016.05.019

    36. [36]

      HADEBE S W, ROBINSON R S. Rhodium-catalyzed hydroboration reactions with sulfur and nitrogen analogues of catecholborane[J]. Eur. J. Org. Chem., 2006:4898-4904.

    37. [37]

      HARDER S, SPIELMANN J. Calcium mediated hydroboration of alkenes: "Trojan horse" or "true" catalysis[J]. J. Organomet. Chem., 2012,698:7-14. doi: 10.1016/j.jorganchem.2011.09.025

    38. [38]

      MAITY A, TEETS T S. Main group Lewis acid-mediated transformations of transition-metal hydride complexes[J]. Chem. Rev., 2016,116(15):8873-8911. doi: 10.1021/acs.chemrev.6b00034

    39. [39]

      BHUNIA M, SAHOO S R, DAS A, AHMED J, SREEJYOTHI P, MANDAL S K. Transition metal-free catalytic reduction of primary amides using an abnormal NHC based potassium complex: Integrating nucleophilicity with Lewis acidic activation[J]. Chem. Sci., 2020,11(7):1848-1854. doi: 10.1039/C9SC05953A

    40. [40]

      YU C, GUO C J, JIANG L H, GONG M L, LUO Y J. Deoxygenation of primary amides to amines with pinacolborane catalyzed by Ca[N (SiMe3)2]2(THF)2[J]. Organometallics, 2021,40(9):1201-1206. doi: 10.1021/acs.organomet.1c00120

    41. [41]

      ZHANG G Q, WU J, ZHENG S P, NEARY M C, MAO J C, FLORES M, TROVITCH R J, DUB P A. Redox-noninnocent ligand-supported vanadium catalysts for the chemoselective reduction of C=X (X=O, N) functionalities[J]. J. Am. Chem. Soc., 2019,141(38):15230-15239. doi: 10.1021/jacs.9b07062

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(0)
  • Abstract views(293)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return