Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine
- Corresponding author: Xiangjian KONG, xjkong@xmu.edu.cn Lasheng LONG, lslong@xmu.edu.cn
Citation:
Shiyi WANG, Chaolong CHEN, Xiangjian KONG, Lansun ZHENG, Lasheng LONG. Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 88-96.
doi:
10.11862/CJIC.20240342
CAI L X, LI S C, YAN D N, ZHOU L P, GUO F, SUN Q F. Watersoluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis[J]. J. Am. Chem. Soc., 2018,140(14):4869-4876. doi: 10.1021/jacs.8b00394
HADLINGTON T J, HERMANN M, FRENKING G, JONES C. Low coordinate germanium (Ⅱ) and Tin (Ⅱ) hydride complexes: Efficient catalysts for the hydroboration of carbonyl compounds[J]. J. Am. Chem. Soc., 2014,136(8):3028-3031. doi: 10.1021/ja5006477
YAO W B, WANG J L, ZHONG A G, WANG S L, SHAO Y L. Transition-metal-free catalytic hydroboration reduction of amides to amines[J]. Org. Chem. Front., 2020,7(21):3515-3520. doi: 10.1039/D0QO01092H
CHAUDHARI M B, GNANAPRAKASAM B. Recent advances in the metal-catalyzed activation of amide bonds[J]. Chem. Asian J., 2019,14(1):76-93. doi: 10.1002/asia.201801317
HANADA S, TSUTSUMI E, MOTOYAMA Y, NAGASHIMA H. Practical access to amines by platinum catalyzed reduction of carboxamides with hydrosilanes: Synergy of dual Si-H groups leads to high efficiency and selectivity[J]. J. Am. Chem. Soc., 2009,131(41):15032-15040. doi: 10.1021/ja9055307
BISAI M K, GOUR K, DAS T, VANKA K, SEN S S. Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides[J]. Dalton Trans., 2021,50(7):2354-2358. doi: 10.1039/D1DT00364J
SUNADA Y, KAWAKAMI H, IMAOKA T, MOTOYAMA Y, NAGASHIMA H. Hydrosilane reduction of tertiary carboxamides by iron carbonyl catalysts[J]. Angew. Chem.-Int. Edit., 2009,48(50):9511-9514. doi: 10.1002/anie.200905025
DAS S, ADDIS D, ZHOU S, JUNGE K, BELLER M. Zinccatalyzed reduction of amides: Unprecedented selectivity and functional group tolerance[J]. J. Am. Chem. Soc., 2010,132(6):1770-1771. doi: 10.1021/ja910083q
CHENG C, BROOKHART M. Iridium-catalyzed reduction of second-ary amides to secondary amines and imines by diethylsilane[J]. J. Am. Chem. Soc., 2012,134(28):11304-11307. doi: 10.1021/ja304547s
DAS S, WENDT B, MOLLER K, JUNGE K, BELLER M. Two iron catalysts are better than one: A general and convenient reduction of aromatic and aliphatic primary amides[J]. Angew. Chem.-Int. Edit., 2012,51(7):1662-1666. doi: 10.1002/anie.201108155
LI B, SORTAIS J B, DARCEL C. Unexpected selectivity in rutheniumcatalyzed hydrosilylation of primary amides: Synthesis of secondary amines[J]. Chem. Commun., 2013,49(35):3691-3693. doi: 10.1039/c3cc39149c
REEVES J T, TAN Z L, MARSINI M A, HAN Z S, XU Y B, REEVES D C, LEE H, LU B Z, SENANAYAKE C H. A practical procedure for reduction of primary, secondary and tertiary amides to amines[J]. Adv. Synth. Catal., 2013,355(1):47-52. doi: 10.1002/adsc.201200835
BLONDIAUX E, CANTAT T. Efficient metal-free hydrositylation of tertiary, secondary and primary amides to amines[J]. Chem. Commun., 2014,50(66):9349-9352. doi: 10.1039/C4CC02894E
SIMMONS B J, HOFFMANN M, HWANG J, JACKL M K, GARG N K. Nickel-catalyzed reduction of secondary and tertiary amides[J]. Org Lett., 2017,19(7):1910-1913. doi: 10.1021/acs.orglett.7b00683
PAN Y X, LUO Z L, XU X, ZHAO H Q, HAN J H, XU L J, FAN Q H, XIAO J L. Ru-catalyzed deoxygenative transfer hydrogenation of amides to amines with formic acid/triethylamine[J]. Adv. Synth. Catal., 2019,361(16):3800-3806. doi: 10.1002/adsc.201900406
TINNIS F, VOLKOV A, SLAGBRAND T, ADOLFSSON H. Chemoselective reduction of tertiary amides under thermal control: Formation of either aldehydes or amines[J]. Angew. Chem.-Int. Edit., 2016,55(14):4562-4566. doi: 10.1002/anie.201600097
ZHOU S L, JUNGR K, ADDIS D, DAS S, BELLER M. A convenient and general iron-catalyzed reduction of amides to amines[J]. Angew. Chem.-Int. Edit., 2009,48(50):9507-9510. doi: 10.1002/anie.200904677
DAS S, JOIN B, JUNGE K, BELLER M. A general and selective copper-catalyzed reduction of secondary amides[J]. Chem. Commun., 2012,48(21):2683-2685. doi: 10.1039/c2cc17209g
KOVALENKO O O, VOLKOV A, ADOLFSSON H. Mild and selective Et2Zn catalyzed reduction of tertiary amides under hydrosilylation conditions[J]. Org. Lett., 2015,17(3):446-449. doi: 10.1021/ol503430t
DAS H S, DAS S, DEY K, SINGH B, HARIDASAN R K, DAS A, AHMED J, MANDAL S K. Primary amides to amines or nitriles: A dual role by a single catalyst[J]. Chem. Commun., 2019,55(79):11868-11871. doi: 10.1039/C9CC05856G
IGARASHI M, FUCHIKAMI T. Transition-metal complex-catalyzed reduction of amides with hydrosilanes: a facile transformation of amides to amines[J]. Tetrahedron Lett., 2001,42(10):1945-1947. doi: 10.1016/S0040-4039(01)00039-9
DAS S, KARMAKAR H, BHATTACHARJEE J, PANDA T K. Aluminium complex as an efficient catalyst for the chemo-selective reduction of amides to amines[J]. Dalton Trans., 2019,48(31):11978-11984. doi: 10.1039/C9DT01806A
LEISCHNER T, SUAREZ L A, SPANNENBERG A, JUNGE K, NOVA A, BELLER M. Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: Scope and mechanism[J]. Chem. Sci., 2019,10(45):10566-10576. doi: 10.1039/C9SC03453F
ONG D Y, YEN Z H, YOSHII A, IMBERNON J R, TAKITA R, CHIBA S. Controlled reduction of carboxamides to alcohols or amines by zinc hydrides[J]. Angew. Chem.-Int. Edit., 2019,58(15):4992-4997. doi: 10.1002/anie.201900233
SORRIBES I, LEMOS S C S, MARTIN S, MAYORAL A, LIMA R C, ANDRES J. Palladium doping of towards a general and selective catalytic hydrogenation of amides to amines and alcohols[J]. Catal. Sci. Technol., 2019,9(24):6965-6976. doi: 10.1039/C9CY02128K
SZOSTAK M, SPAIN M, EBERHART A J, PROCTER D J. Highly chemoselective reduction of amides (primary, secondary, tertiary) to alcohols using SmI2/Amine/H2O under mild conditions[J]. J. Am. Chem. Soc., 2014,136(6):2268-2271. doi: 10.1021/ja412578t
LAMPLAND N L, HOVEY M, MUKHERJEE D, SADOW A D. Magnesium-catalyzed mild reduction of tertiary and secondary amides to amines[J]. ACS Catal., 2015,5(7):4219-4226. doi: 10.1021/acscatal.5b01038
YE P Q, SHAO Y L, YE X Z, ZHANG F J, LI R H, SUN J N, XU B H, CHEN J X. Homoleptic bis (trimethylsilyl) amides of yttrium complexes catalyzed hydroboration reduction of amides to amines[J]. Org. Lett., 2020,22(4):1306-1310. doi: 10.1021/acs.orglett.9b04606
BARGER C J, DICKEN R D, WEIDNER V L, MOTTA A, LOHR T L, MARKS T J. La[N (SiMe3)2]3-catalyzed deoxygenative reduction of amides with pinacolborane: Scope and mechanism[J]. J. Am. Chem. Soc., 2020,142(17):8019-8028. doi: 10.1021/jacs.0c02446
TAMANG S R, SINGH A, BEDI D, BAZKIAEI A R, WARNER A A, GLOGAU K, McDONALD C, UNRUH D K, FINDLATER M. Polynuclear lanthanide-diketonato clusters for the catalytic hydroboration of carboxamides and esters[J]. Nat. Catal., 2020,3(2):154-162. doi: 10.1038/s41929-019-0405-5
WENG Z Z, CHEN C L, YE L W, LONG L S, ZHENG L S, KONG X J. Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides[J]. Sci. China-Chem., 2023,66(2):443-448. doi: 10.1007/s11426-022-1493-y
LIU W D, CHEN L Q, QIU Q H, QI M Q, XU H, CHEN C L, LONG L S, ZHENG L S, KONG X J. A mixed valence decanuclear ceriumoxo cluster Ce4ⅢCe6Ⅳ for efficient photocurrent response[J]. Inorg. Chem. Commun., 2024,159111763. doi: 10.1016/j.inoche.2023.111763
BAGE A D, HUNT T A, THOMAS S P. Hidden boron catalysis: Nucleophile-promoted decomposition of HBpin[J]. Org. Lett., 2020,22(11):4107-4112. doi: 10.1021/acs.orglett.0c01168
BROWN H C, HEIM P. Diborane as a mild reducing agent for the conversion of primary, secondary, and tertiary amides into the corresponding amines[J]. J. Am. Chem. Soc., 1964,86(17):3566-3567. doi: 10.1021/ja01071a037
MULLER F, TRINCADO M, PRIBANIC B, VOGT M, GRUTZMACHER H. Stable BH3 adducts to rhodium amide bonds[J]. J. Organomet. Chem., 2016,821:154-162. doi: 10.1016/j.jorganchem.2016.05.019
HADEBE S W, ROBINSON R S. Rhodium-catalyzed hydroboration reactions with sulfur and nitrogen analogues of catecholborane[J]. Eur. J. Org. Chem., 2006:4898-4904.
HARDER S, SPIELMANN J. Calcium mediated hydroboration of alkenes: "Trojan horse" or "true" catalysis[J]. J. Organomet. Chem., 2012,698:7-14. doi: 10.1016/j.jorganchem.2011.09.025
MAITY A, TEETS T S. Main group Lewis acid-mediated transformations of transition-metal hydride complexes[J]. Chem. Rev., 2016,116(15):8873-8911. doi: 10.1021/acs.chemrev.6b00034
BHUNIA M, SAHOO S R, DAS A, AHMED J, SREEJYOTHI P, MANDAL S K. Transition metal-free catalytic reduction of primary amides using an abnormal NHC based potassium complex: Integrating nucleophilicity with Lewis acidic activation[J]. Chem. Sci., 2020,11(7):1848-1854. doi: 10.1039/C9SC05953A
YU C, GUO C J, JIANG L H, GONG M L, LUO Y J. Deoxygenation of primary amides to amines with pinacolborane catalyzed by Ca[N (SiMe3)2]2(THF)2[J]. Organometallics, 2021,40(9):1201-1206. doi: 10.1021/acs.organomet.1c00120
ZHANG G Q, WU J, ZHENG S P, NEARY M C, MAO J C, FLORES M, TROVITCH R J, DUB P A. Redox-noninnocent ligand-supported vanadium catalysts for the chemoselective reduction of C=X (X=O, N) functionalities[J]. J. Am. Chem. Soc., 2019,141(38):15230-15239. doi: 10.1021/jacs.9b07062
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Hong Zheng , Xin Peng , Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030