Citation: Juan CHEN, Guoyu YANG. A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341 shu

A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra

  • Corresponding author: Guoyu YANG, ygy@bit.edu.cn
  • Received Date: 18 September 2024
    Revised Date: 29 November 2024

Figures(7)

  • An aluminoborate, Na2.5Rb[Al{B5O10}{B3O5}]·0.5NO3·H2O (1), was synthesized under hydrothermal condition, which was built by mixed oxoboron clusters and AlO4 tetrahedra. In the structure, the [B5O10]5- and [B3O7]5- clusters are alternately connected to form 1D [B8O15]n6n- chains, which are further linked by AlO4 units to form a 2D monolayer with 7-membered ring and 10-membered ring windows. Two adjacent monolayers with opposite orientations further form a porous-layered structure with six channels through B—O—Al bonds. Compound 1 was characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectroscopy, UV-Vis diffuse reflection spectroscopy, and thermogravimetric analysis (TGA), respectively. UV-Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm, suggesting it may have potential application in UV regions.
  • 加载中
    1. [1]

      BECKER P. Borate materials in nonlinear optics[J]. Adv. Mater., 1998,10:979-992. doi: 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N

    2. [2]

      MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: A rich source for optical materials[J]. Chem. Rev., 2021,121:1130-1202. doi: 10.1021/acs.chemrev.0c00796

    3. [3]

      ZHU X L, CZOLKOS I, JOHANSSON A, NIELSEN T, KRISTENSEN A. Master origination by 248 nm DUV lithography for plasmonic color generation[J]. Appl. Phys. Lett., 2021,118141103. doi: 10.1063/5.0046163

    4. [4]

      WEI Q, WANG J J, HE C, CHENG J W, YANG G Y. Deep-ultraviolet nonlinear optics in a borate framework with 21‑ring channels[J]. Chem.‒Eur. J., 2016,22:10759-10762. doi: 10.1002/chem.201602135

    5. [5]

      CHEN C T, WU B C, JIANG A D, YOU G M. A new ultraviolet SHG crystal β-BaB2O4[J]. Scientia Sinica Series B-Chemical Biological Agricultural Medical & Earth Sciences, 1985,28:235-243.

    6. [6]

      CHEN C T, WU Y C, JIANG A D, WU B C, YOU G M, LI R K, LIN S J. New nonlinear-optical crystal: LiB3O5[J]. J. Opt. Soc. Am. B, 1989,6:616-621. doi: 10.1364/JOSAB.6.000616

    7. [7]

      WU Y C, SASAKI T, NAKAI S, YOKOTANI A, TANG H G, CHEN C T. CsB3O5: A new nonlinear optical crystal[J]. Appl. Phys. Lett., 1993,62:2614-2615. doi: 10.1063/1.109262

    8. [8]

      WU B C, TANG D Y, YE N, CHEN C T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal[J]. Opt. Mater., 1996,1:105-1093.

    9. [9]

      YANG G Y. OXO cluster chemistry[M]. Beijing: Science Press, 2012: 224-261

    10. [10]

      CHEN J, WANG J J, CHEN C A, YANG G Y. Two new borates built by different types of {B9} cluster units[J]. Chem. Res. Chin. Univ., 2022,38:744-749. doi: 10.1007/s40242-022-1473-7

    11. [11]

      CHEN C A, YANG G Y. Two B5On (n=11, 12) cluster-based borates with deep UV cutoff edge[J]. Chem. J. Chinese Universities, 2022,4320210711.

    12. [12]

      WANG J J, YANG G Y. A novel supramolecular magnesoborate framework with snowflake-like channels built by unprecedented huge B69 cluster cages[J]. Chem. Commun., 2017,53:10398-10401. doi: 10.1039/C7CC05404A

    13. [13]

      LIN Z E, YANG G Y. Oxo boron clusters and their open frameworks[J]. Eur. J. Inorg. Chem., 2011,26:3857-3867.

    14. [14]

      YU H W, WU H P, PAN S L, YANG Z H, HOU X L, SU X, JING Q, POEPPELMEIER K R, RONDINELLI J M. Cs3Zn6B9O21: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response[J]. J. Am. Chem. Soc., 2014,136:1264-1267. doi: 10.1021/ja4117389

    15. [15]

      WANG G M, YANG G Y. Advances in microporous inorganic borates, germanates and borogermanates[J]. Chinese J. Inorg. Chem., 2006,22:1359-1370. doi: 10.3321/j.issn:1001-4861.2006.08.001

    16. [16]

      PAN C Y, LIU G Z, ZHENG S T, YANG G Y. GeB4O9·H2en: An organically templated borogermanate with large 12-ring channels built by B4O9 polyanions and GeO4 units: Host-guest symmetry and charge matching in triangular-tetrahedral frameworks[J]. Chem.‒Eur. J., 2008,14:5057-5063. doi: 10.1002/chem.200701796

    17. [17]

      CHOUDHURY A, NEERAj S, NATARAjAN S, RAO C N R. An open-framework zincoborate formed by Zn6B12O24 clusters[J]. J. Chem. Soc. Dalton Trans., 2002,7:1535-1538.

    18. [18]

      LIU X, ZHOU J, AMARANTE T R, PAZ F A A, FU L S. Vanadoborates: Cluster‑based architectures preparation and properties[J]. Dalton Trans., 2021,50:1550-1568. doi: 10.1039/D0DT03820B

    19. [19]

      JU J, LIN J H, LI G B, YANG T, LI H M, LIAO F H, LOONG C K, YOU L P. Aluminoborate-based molecular sieves with 18-octahedral-atom tunnels[J]. Angew. Chem.‒Int. Edit., 2003,42:5607-5610. doi: 10.1002/anie.200352263

    20. [20]

      WEI Q, SUN S J, ZHANG J, YANG G Y. Extending unique 1D borate chains to 3D frameworks by introducing metallic node[J]. Chem.‒Eur. J., 2014,23:7614-7620.

    21. [21]

      JU J, YANG T, LI G B, LIAO F H, WANG Y X, YOU L P, LIN J H. PKU-5: An aluminoborate with novel octahedral framework topology[J]. Chem.‒Eur. J., 2004,10:3901-3906. doi: 10.1002/chem.200400066

    22. [22]

      LI X Q, CHU D D, QIU H T, WU Y B, HOU X L. LiCs3AlB7O14: Achieving enhanced optical anisotropy via[AlO4] tetrahedron introduction to rearrange the anionic framework[J]. Dalton Trans., 2023,52:3942-3946. doi: 10.1039/D3DT00401E

    23. [23]

      CHEN J, CHEN C A, ZHANG P Y, YANG G Y. Three new aluminoborates: From 1D tube to 3D framework[J]. Dalton Trans., 2023,52:12845-12851. doi: 10.1039/D3DT02374E

    24. [24]

      LIU W F, CHEN C A, YANG G Y. [H2dab][GaB5O10]: An acentric galloborate with a 4-connected uninodal framework[J]. Chem. Res. Chin. Univ., 2024,40:747-752. doi: 10.1007/s40242-024-4130-5

    25. [25]

      RONG C, YU Z W, WANG Q, ZHENG S T, PAN C Y, DENG F, YANG G Y. Aluminoborates with open frameworks: Syntheses structures and properties[J]. Inorg. Chem., 2009,48:3650-3659. doi: 10.1021/ic802124v

    26. [26]

      ZHOU J, ZHENG S T, ZHANG M Y, LIU G Z, YANG G Y. A new layered aluminoborate [Zn(dien)2][{Al(OH)}{B5O9F}] templated by transition metal complexes[J]. CrystEngComm, 2009,11:2597-2600. doi: 10.1039/b909693k

    27. [27]

      CHENG L, YANG G Y. A novel aluminoborate open-framework [In(dien)2][Al2B7O16H2] with large chiral cavities templated by chiral main group metal complexes[J]. Chem. Commun., 2014,50:344-346. doi: 10.1039/C3CC47440B

    28. [28]

      WEI L, WEI Q, LIN Z E, MENG Q, HE H, YANG B F, YANG G Y. A 3D aluminoborate open framework interpenetrated by 2D zinc-amine coordination-polymer networks in its 11-ring channels[J]. Angew. Chem.‒Int. Edit, 2014,53:7188-7191. doi: 10.1002/anie.201402663

    29. [29]

      CAO G J, WEI Q, CHENG J W, CHENG L, YANG G Y. A zeolite CAN-type aluminoborate with gigantic 24-ring channels[J]. Chem. Commun., 2016,52:1729-1732. doi: 10.1039/C5CC08164E

    30. [30]

      CHEN C A, YANG G Y. Na1.5Cs0.5[Al{BO3}{B9O15(OH)3}1/3]: An acentric layered aluminoborate with nonlinear-optical properties[J]. Inorg. Chem., 2023,62:14163-14167. doi: 10.1021/acs.inorgchem.3c02539

    31. [31]

      LIU Y, PAN Y, CHENG J W, HE H, YANG B F, ZHANG Q, YANG G Y. A series of aluminoborates templated or supported by zinc-amine complexes[J]. Chem.‒Eur. J., 2015,21:15732-15739. doi: 10.1002/chem.201501420

    32. [32]

      JEONG H K, NAIR S, VOGT T, DICKINSON L C, TSAPATSIS M. A highly crystalline layered silicate with three-dimensionally microporous layers[J]. Nat. Mater., 2002,2:53-58.

    33. [33]

      XIONG D B, ZHAO J T, CHEN H H, YANG X X. A borogermanate with three-dimensional open-framework layers[J]. Chem.‒Eur. J., 2007,13:9862-9865. doi: 10.1002/chem.200701009

    34. [34]

      CHENG L, WEI Q, WU H Q, ZHOU L J, YANG G Y. Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M=Al, Ga): Two novel UV nonlinear optical metal borates containing two types of oxoboron clusters[J]. Chem.‒Eur. J., 2013,19:17662-17667. doi: 10.1002/chem.201303088

    35. [35]

      WEI Q, LI L, CHENG L, MENG Q, YANG G Y. Two novel metal borates with three-dimensional open-framework layers constructed from[M2B8O20(OH)2] (M=Al, Ga) cluster units[J]. Dalton Trans., 2014,43:9427-9430. doi: 10.1039/C4DT00652F

    36. [36]

      QIN D, ZHANG T J, MA C B, YANG G Y. Two novel 3D borates: Porous-layer and layer-pillar frameworks[J]. Dalton Trans., 2020,49:3824-3829. doi: 10.1039/C9DT03867A

    37. [37]

      CHEN C A, PAN R, YANG G Y. Syntheses and structures of a new 2D layered borate and a novel 3D porous-layered aluminoborate[J]. Dalton Trans., 2020,49:3750-3757. doi: 10.1039/C9DT03846A

    38. [38]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    39. [39]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    40. [40]

      CHRIST C L, CLARK J R. Crystal-chemical classification of borate structures with emphasis on hydrated borates[J]. Phys. Chem. Miner., 1977,2:59-87. doi: 10.1007/BF00307525

    41. [41]

      CHEN Z L, WU C F, ZENG H, YU F. A new acentric borate-nitrate Cs3B8O13(NO3) with interpenetrating porous 3D covalent and ionic lattices[J]. Dalton Trans., 2021,50:8676-8679. doi: 10.1039/D1DT01275D

    42. [42]

      ZHANG Q, ZHANG F F, LI F M, HAN S J, YANG Z H, PAN S L. M3B6O10NO3 (M=K, Rb): Two new alkali metal borate-nitrates with noncentrosymmetric structures[J]. Eur. J. Inorg. Chem., 2021,13:1297-1304.

    43. [43]

      SUN X S, QIN D, LI X Y, YANG G Y. A new tubular borate built by[B14O24(OH)6]12- cluster units[J]. Chem. Res. Chin. Univ., 2022,38:123-127. doi: 10.1007/s40242-021-1183-6

    44. [44]

      PAN C Y, WANG G M, ZHENG S T, YANG G Y. [NH3CH2CHCH3NH3]][B8O11(OH)4]·H2O: Synthesis and characterization of the first 1D borate templated by 1, 2-diaminopropane[J]. J. Solid State Chem., 2007,180:1553-1558. doi: 10.1016/j.jssc.2007.01.038

    45. [45]

      PAN R, CHEN C A, YANG B F, YANG G Y. Two new octaborates constructed of two different sub-clusters and supported by metal complexes[J]. J. Clust. Sci., 2016,28:1237-1248.

    46. [46]

      HUANG G, PAN R, HE H, YANG B F, YANG G Y. Two new mixed metal borates made of Mg(B6O7(OH)6)2 and B8O14(OH)4 cluster units[J]. J. Clust. Sci., 2015,26:1889-1899. doi: 10.1007/s10876-015-0886-6

    47. [47]

      WEI Q, HE C, SUN L, AN X T, ZHANG J, YANG G Y. Na2(H2en)[B5O8(OH)]2[B3O4(OH)]2 and Na3(HCOO)[B5O8(OH)]: Two borates Co-templated by inorganic cations and organic compounds[J]. Eur. J. Inorg. Chem., 2017,34:4061-4067.

    48. [48]

      PENIN N, TOUBOUL M, NOWOGROCKI G. Crystal structure of a new form of sodium octoborate β-Na2B8O13[J]. J. Solid State Chem., 2002,168:316-321. doi: 10.1006/jssc.2002.9704

    49. [49]

      AN D H, KONG Q R, ZHANG M, YANG Y, LI D N, YANG Z H, PAN S L, CHEN H M, SU Z, SUN Y, MUTAILIPU M. Versatile coordination mode of LiNaB8O13 and α- and β-LiKB8O13 via the flexible assembly of four-connected B5O10 and B3O7 groups[J]. Inorg. Chem., 2016,55:552-554. doi: 10.1021/acs.inorgchem.5b02500

    50. [50]

      PENIN N, TOUBOUL M, NOWOGROCKI G. Crystal structure of the second form of silver octoborate β-Ag2B8O13[J]. Solid State Sci., 2003,5:559-564. doi: 10.1016/S1293-2558(03)00036-0

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    4. [4]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    5. [5]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    6. [6]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    10. [10]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    11. [11]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    12. [12]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    13. [13]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    16. [16]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    17. [17]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    18. [18]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    19. [19]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    20. [20]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

Metrics
  • PDF Downloads(2)
  • Abstract views(231)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return