Citation: Bofei JIA, Zhihao LIU, Zongyuan GAO, Shuai ZHOU, Mengxiang WU, Qian ZHANG, Xiamei ZHANG, Shuzhong CHEN, Xiaohan YANG, Yahong LI. Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317 shu

Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity

  • Corresponding author: Yahong LI, liyahong@suda.edu.cn
  • Received Date: 1 September 2024
    Revised Date: 1 March 2025

Figures(11)

  • Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a] pyridine derivatives were developed. These methods include the following: (ⅰ) Cu(Ⅱ) salts were used as metal sources and N, N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes. (ⅱ) An iodidecontaining compound was utilized as a ligand and iodide source to prepare complexes. An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated. (ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives, producing polydentate ligand scaffolds. Eight complexes were prepared and characterized. The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated. With the exception of complex 4, the remaining seven complexes all showed high catalytic activity. The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.
  • 加载中
    1. [1]

      MIYAURA N, NEUBA A, FLORKE U, MEYER-KLAUCK W, SALOMONE-STAGNI M, BILLE , BOTHE E, HFER P, HENKEL G. The trinuclear copper(Ⅰ) thiolate complexes[Cu3(NGuaS)3]0/1+ and their dimeric variants[Cu6(NGuaS)6]1+/2+/3+ with biomimetic redox properties[J]. Angew. Chem.‒Int. Edit., 2011,50:4503-4507. doi: 10.1002/anie.201008076

    2. [2]

      TAO W, YERBULEKOVA A, MOORE C E, SHAFAAT H S, ZHANG S. Controlling the direction of S-nitrosation versus denitrosation: Reversible cleavage and formation of an S—N bond within a dicopper center[J]. J. Am. Chem. Soc., 2022,144:2867-2872. doi: 10.1021/jacs.1c12799

    3. [3]

      MIRTS E N, DIKANOV S A, JOSE A, SOLOMON E I, LU Y. A binuclear CuA center designed in an all α-helical protein scaffold[J]. J. Am. Chem. Soc., 2020,142:13779-13794. doi: 10.1021/jacs.0c04226

    4. [4]

      PRIGGE S T, EIPPER B A, MAINS R E, AMZEL L M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex[J]. Science, 2004,304:864-867. doi: 10.1126/science.1094583

    5. [5]

      LIEBERMAN R L, ROSENZWEIG A C. Crystal structure of a membrane-bound metalloenzyme that catalysis the biological oxidation of methane[J]. Nature, 2005,434:177-182. doi: 10.1038/nature03311

    6. [6]

      DÍEZ-GONZÁLEZ S, NOLAN S P. N-heterocyclic carbene-copper(Ⅰ) complexes in homogeneous catalysis[J]. Synlett, 2007(14):2158-2167.

    7. [7]

      LAZREG F, NAHRA F, CAZIN C S J. Copper-NHC complexes in catalysis[J]. Coord. Chem. Rev., 2015,293-294:48-79. doi: 10.1016/j.ccr.2014.12.019

    8. [8]

      KUMAR S, ARORA A, MAIKHURI V K, CHAUDHARY A, KUMAR R, PARMAR V S, SINGH B K, MATHUR D. Advances in chromone-based copper(Ⅱ) Schiff base complexes: Synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis[J]. RSC Adv., 2024,14:17102-17139. doi: 10.1039/D4RA00590B

    9. [9]

      PLASS W, POHLMANN A, RAUTENGARTEN J. Magnetic interactions as supramolecular function: Structure and magnetic properties of hydrogen-bridged dinuclear copper(Ⅱ) complexes[J]. Angew. Chem.‒Int. Edit., 2001,40:4207-4210. doi: 10.1002/1521-3773(20011119)40:22<4207::AID-ANIE4207>3.0.CO;2-W

    10. [10]

      HOZUMI T, HASHIMOTO K, OHKOSHI S I. Electrochemical synthesis, crystal structure, and photomagnetic properties of a three-dimensional cyano-bridged copper-molybdenum complex[J]. J. Am. Chem. Soc., 2005,127:3864-3869. doi: 10.1021/ja044107o

    11. [11]

      LI J Y, WANG L D, ZHAO Z F, LI X Y, YU X, HUO P H, JIN Q H, LIU Z W, BIAN Z Q, HUANG C H. Two-coordinate copper(Ⅰ)/NHC complexes: Dual emission properties and ultralong room-temperature phosphorescence[J]. Angew. Chem.‒Int. Edit., 2020,59:8210-8217. doi: 10.1002/anie.201916379

    12. [12]

      ZHANG J P, LIN Y Y, HUANG X C, CHEN X M. Copper(Ⅰ) 1, 2, 4-triazolates and related complexes: Studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties[J]. J. Am. Chem. Soc., 2005,127:5495-5506. doi: 10.1021/ja042222t

    13. [13]

      LAVIE-CAMBOT A, CANTUEL M, LEYDET Y, JONUSAUSKAS G, BASSANI D, McCLENAGHAN N D. Improving the photophysical properties of copper(Ⅰ) bis(phenanthroline) complexes[J]. Coord. Chem. Rev., 2008,252:2572-2584. doi: 10.1016/j.ccr.2008.03.013

    14. [14]

      WILLIAMS R M, DE COLA L, HARTL F, LAGREF J J, PLANEIX J M, DE CIAN A, HOSSEINI M W. Photophysical, electrochemical and electrochromic properties of copper-bis(4, 4'-dimethyl-6, 6'-diphenyl-2, 2'-bipyridine) complexes[J]. Coord. Chem. Rev., 2002,230:253-261. doi: 10.1016/S0010-8545(02)00046-2

    15. [15]

      HAMZE R, PELTIER J L, SYLVINSON D, BERTRAND G, THOMPSON M E. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime[J]. Science, 2019,363:601-606. doi: 10.1126/science.aav2865

    16. [16]

      SCHNEIDER J L, CARRIER S M, RUGGIERO C E, YOUNG V G, TOLMAN W B. Influences of ligand environment on the spectroscopic properties and disproportionation reactivity of copper-nitrosyl complexes[J]. J. Am. Chem. Soc., 1998,120:11408-11418. doi: 10.1021/ja982172q

    17. [17]

      KIM D, WANG L P, HALE J J, LYNCH C L, BUDHU R J, MACCOSS M, MILLS S G, MALKOWITZ L, GOULD S L, DEMARTINO J A, SPRINGER M S, HAZUDA D, MILLER M, KESSLER J, HRIN R C, CARVER G, CARELLA A, HENRY K, LINEBERGER J, SCHLEIF W A, EMINI E A. Potent 1, 3, 4-trisubstituted pyrrolidine CCR5 receptor antagonists: Effects of fused heterocycles on antiviral activity and pharmacokinetic properties[J]. Bioorg. Med. Chem. Lett., 2005,152129. doi: 10.1016/j.bmcl.2005.02.030

    18. [18]

      VANDA D, ZAJDEL P, SOURAL M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases[J]. Eur. J. Med. Chem., 2019,181111569. doi: 10.1016/j.ejmech.2019.111569

    19. [19]

      KITAZAWA D, TOMINAGA G, TAKANO A. One-pot three-component synthesis of imidazo[1,5-a]pyridines[J]. Chemical Abstracts, 2001,134200276.

    20. [20]

      NAKAMURA H, YAMAMOTO H. One-pot three-component synthesis of imidazo[1,5-a]pyridines[J]. Chemical Abstracts, 2005,142440277.

    21. [21]

      ALBRECHT G, GEIS C, HERR J M, RUHLI J, GOTTLICH R, SCHELTTWEIN D. Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films[J]. Org. Electron., 2019,65:321-326. doi: 10.1016/j.orgel.2018.11.032

    22. [22]

      IMADA Y, MUKAI S, TAHARA K, KOZAI N, ITAYA M, YOSHIDA Y, UETA S, ARAKAWA Y, MINAGAWA K, YAGISHITA F. Divalent metal complexes of N, O- and N, N-bidentate imidazo[1,5-a]pyridine ligands: Synthesis, crystal structures, and photophysical properties[J]. Inorg. Chim. Acta, 2023,555121584. doi: 10.1016/j.ica.2023.121584

    23. [23]

      DONG J, YANG D D, WANG B Q. Homo- and copolymerization of norbornene with allyl palladium and nickel complexes bearing imidazo[1,5-a]pyridine sulfonate ligands[J]. Eur. J. Inorg. Chem., 2021:4661-4668.

    24. [24]

      PISCHEDDA S, STOCCORO S, ZUCCA A, SCIORTINO G, ORTU F, CLARKSON G J. Synthesis and characterization of new Pd(Ⅱ) and Pt(Ⅱ) complexes with 3-substituted 1-(2-pyridyl)imidazo[1,5-a]pyridine ligands[J]. Dalton Trans., 2021,50:4859-4873. doi: 10.1039/D1DT00546D

    25. [25]

      CUI Y F, GE Y, LI Y H, TAO J, YAO J L, DONG Y P. Single-ion magnet behavior of two pentacoordinate Co complexes with a pincer ligand 2, 6-bis(imidazo[1,5-a]pyridin-3-yl)pyridine[J]. Struct. Chem., 2020,31:547-555. doi: 10.1007/s11224-019-01429-3

    26. [26]

      ZHANG H F, CHEN Y M, QIN Y R, LI Y H, LI W, LIU W. Cu and Cu complexes of 1, 1'-(pyridin-2-ylmethylene)-bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridine]: In situ generation of the ligand via acetic acid-controlled metal-ligand reactions[J]. Chin. J. Struct. Chem., 2015,34:1417-1427.

    27. [27]

      LIU J N, CAO Y H, LI L, PEI H, CHEN Y M, HU J F, QIN Y R, LI Y H, LI W, LIU W. Titanium complexes supported by imidazo[1,5-a]pyridine-containing pyrrolyl ligand as catalysts for hydroamination and polymerization reactions, and as an antitumor reagent[J]. RSC Adv., 2015,5:10318-10325. doi: 10.1039/C4RA14692A

    28. [28]

      SCHLEICHER D, TRONNIER A, SOELLNER J, STRASSNER T. Cyclometalated ruthenium(Ⅱ) NHC complexes with imidazo[1,5-a]pyridine-based (C.C) ligands—Synthesis and characterization[J]. Eur. J. Inorg. Chem., 2019,2019:1956-1965. doi: 10.1002/ejic.201900108

    29. [29]

      ZHANG Y W, DAS R, LI Y, WANG Y Y, HAN Y F. Synthesis, characterization, and properties of organometallic molecular cylinders bearing bulky imidazo[1,5-a]pyridine-based N-heterocyclic carbene ligands[J]. Chem.‒Eur. J., 2019,25:5472-5479. doi: 10.1002/chem.201806204

    30. [30]

      CHEN Y M, LI L, CHEN Z, LIU Y L, HU H L, CHEN W Q, LIU W, LI Y H, LEI T, CAO Y Y, KANG Z H, LIN M S, LI W. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: A powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands[J]. Inorg. Chem., 2012,51:9705-9713. doi: 10.1021/ic300949y

    31. [31]

      KUNDU N, BHATTACHARYA K, ABTAB S M T, CHAUDHURY M. 'One-pot' synthesis of multi-ring heteroaromatic compounds involving a pair of imidazo[1,5-a]pyridine moiety: Reporting an interesting bis-bidentate ligand capable of forming helicates[J]. Tetrahedron Lett., 2012,53:2719-2721. doi: 10.1016/j.tetlet.2012.03.078

    32. [32]

      FULWA V K, SAHU R, JENA H S, MANIVANNAN V. Novel synthesis of 2, 4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazo[1,5-a]pyridine)picolinamidines: Nitrogen-rich ligands[J]. Tetrahedron Lett., 2009,50:6264-6267. doi: 10.1016/j.tetlet.2009.09.002

    33. [33]

      BURSTEIN C, LEHMANN C W, GLORIUS F. Imidazo[1,5-a]pyridine-3-ylidenes-pyridine derived N-heterocyclic carbene ligands[J]. Tetrahedron, 2005,61:6207-6217. doi: 10.1016/j.tet.2005.03.115

    34. [34]

      WANG J, DYERS L, MASON R, AMOYAW P, BU X R. Highly efficient and direct heterocyclization of dipyridyl ketone to N, N-bidentate ligands[J]. J. Org. Chem., 2005,70:2353-2356. doi: 10.1021/jo047853k

    35. [35]

      BLUHM M E, FOLLI C, PUFKY D, KRÖGER M, WALTER O, DÖRING M. 3-Aminoiminoacrylate, 3-aminoacrylate, and 3-amidoiminomalonate complexes as catalysts for the dimerization of olefins[J]. Organometallics, 2005,24:4139-4152. doi: 10.1021/om049075s

    36. [36]

      ÁLVAREZ C M, ÁLVAREZ-MIGUEL L, GARCÍA-RODRÍGUEZ R, MARTÍN-ÁLVAREZ J M, MIGUEL D. 3-(Pyridin-2-yl)imidazo[1,5-a]pyridine (pyridylindolizine) as ligand in complexes of transition and main-group metals[J]. Eur. J. Inorg. Chem., 2015,2015:4921-4934. doi: 10.1002/ejic.201500776

    37. [37]

      LIGTENBARG A G J, SPEK A L, HAGE R B, FERINGA B L. Vanadium(Ⅴ) complexes based on a bis(pyridine)-imine ligand (HL); Synthesis and crystal structure of a dioxovanadium(Ⅴ) complex involving a ligand cyclisation[J]. J. Chem. Soc. Dalton Trans., 1999(5):659-661. doi: 10.1039/a809476d

    38. [38]

      ÁLVAREZ C M, ÁLVAREZ-MIGUEL L, GARCÍA-RODRÍGUEZ R, MIGUEL D. Complexes with 3-(pyridin-2-yl)imidazo[1,5-a]pyridine ligands by spontaneous dimerization of pyridine-2-carboxaldehyde within the coordination sphere of manganese(Ⅱ) in a one-pot reaction[J]. Dalton Trans., 2012,41:7041-7046. doi: 10.1039/c2dt30453h

    39. [39]

      GARINO C, RUIU T, SALASSA L, ALBERTINO A, VOLPI G, NERVI C, GOBETTO R, HARDCASTLE K I. Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containing pyridylimidazo[1,5-a]pyridine ligands[J]. Eur. J. Inorg. Chem., 2008:3587-3591.

    40. [40]

      SALASSA L, GARINO C, ALBERTINO A, VOLPI G, NERVI C, GOBETTO R, HARDCASTLE K I. Computational and spectroscopic studies of new rhenium(Ⅰ) complexes containing pyridylimidazo[1,5-a]pyridine ligands: Charge transfer and dual emission by fine-tuning of excited states[J]. Organometallics, 2008,27:1427-1435. doi: 10.1021/om701175z

    41. [41]

      VOLPI G, GARINO C, SALASSA L, FIEDLER J, HARDCASTLE K I, GOBETTO R, NERVI C. Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1,5-α]pyridine ligands: Exploitation of an efficient intersystem crossing[J]. Chem.‒Eur. J., 2009,15:6415-6427. doi: 10.1002/chem.200801474

    42. [42]

      CHEN Y M, LI L, CAO Y Y, WU J, GAO Q, LI Y H, HU H L, LIU W, LIU Y L, KANG Z H, LI J P. Cu-mediated controllable creation of tertiary and quaternary carbon centers: Designed assembly and structures of a new class of copper complexes supported by in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands[J]. CrystEngComm, 2013,15:2675-2681. doi: 10.1039/c3ce00012e

    43. [43]

      BLUHM V, CIESIELSKI M, GÖRLS H, WALTER O, DÖRING M. Complexes of Schiff bases and intermediates in the copper-catalyzed oxidative heterocyclization by atmospheric oxygen[J]. Inorg. Chem., 2003,42:8878-8885. doi: 10.1021/ic034773a

    44. [44]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    45. [45]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    46. [46]

      CASANOVA D, LLUNELL M, ALEMANY P, ALVAREZ S. The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study[J]. Chem.‒Eur. J., 2005,11:1479-1494. doi: 10.1002/chem.200400799

    47. [47]

      ZHANG Q, CUI Y F, ZHANG X M, LI Y H, YAO J L. Manganese(Ⅱ) and copper(Ⅰ) compounds based on two derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, magnetic properties, and catalytic activity[J]. Chin. J. Struct. Chem., 2022,412203148.

    48. [48]

      JING Y, ZHANG X M, CUI Y F, LI D W, SUN H, GE Y, LI Y H. Two copper complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, and catalytic property[J]. Chin. J. Struct. Chem., 2020,39:1057-1062.

    49. [49]

      FEI H H, ROGOW D L, OLIVER S R J. Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(Ⅰ) and Ag(Ⅰ)[J]. J. Am. Chem. Soc., 2010,132:7202-7209.

  • 加载中
    1. [1]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    6. [6]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    7. [7]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    8. [8]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    11. [11]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    14. [14]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    15. [15]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    16. [16]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    17. [17]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(0)
  • Abstract views(65)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return