Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification
- Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
Citation:
Xiaoyao YIN, Wenhao ZHU, Puyao SHI, Zongsheng LI, Yichao WANG, Nengmin ZHU, Yang WANG, Weihai SUN. Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(3): 469-479.
doi:
10.11862/CJIC.20240309
ZHANG W H, PENG X C, FENG X D. Recent progress of perovskite solar cells[J]. Electronic Components and Materials, 2014, 33(8): 7-11
ZHAO P, OUYANG X P. An overview of perovskite solar cell simulation based on drift-diffusion theory[J]. Modern Applied Physics, 2020, 11(1): 4-12
YANG W C, YAO Y, WU C Q. Recombination mechanism of electron holes in perovskite solar cells and their effect on open-circuit voltage[C]//Photochemistry Committee of Chinese Renewable Energy Society. Proceedings of the 2nd Symposium on Novel Solar Cells: Vol. 1. [S.l.]: [s.n.], 2015.
HUANG C H. Research status of light absorption layer in carbon-based perovskite solar cells[J]. Modern Chemical Research, 2018(12): 141-142
KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051
doi: 10.1021/ja809598r
QIU L B. Built-in supramolecular complex improving the environmental safety and stability of perovskite solar cells by largely reducing lead toxicity[J]. Sci. Bull., 2023, 68(27): 3546-3548
MENG X W. Preparation and performance optimization of cesium-based all-inorganic perovskite solar cells[D]. Jilin: Jilin University, 2021: 107
WU T H, QIN Z Z, WANG Y B, WU Y Z, CHEN W, ZHANG S F, CAI M L, DAI S Y, ZHANG J, LIU J. The main progress of perovskite solar cells in 2020—2021[J]. Nano-Micro Lett., 2021, 13: 1-18
doi: 10.1007/s40820-020-00525-y
YU B C, ZHANG H Y, WU J H, LI Y S, LI H S, LI Y M, SHI J J, WU H J, LI D M, LUO Y H, MENG Q B. Solvent-engineering toward CsPb(IxBr1-x)3 films for high-performance inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2018, 6(40): 19810-19816
doi: 10.1039/C8TA07968D
YANG Y, MA S P, LUO Y, LIN F Y, ZHU L, GUO X Y. Multidimensional CsPbX3 inorganic perovskite materials: Synthesis and solar cells application[J]. Prog. Chem., 2021, 33(5): 779-801
CHANG X W, LI W P, ZHU L Q, LIU H C, GENG H F, XIANG S S, LIU J M, CHEN H N. Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33649-33655
doi: 10.1021/acsami.6b11393
STOUMPOS C, MALLIAKAS C, PETERS J, LIU Z, SEBASTIAN M, IM J, CHASAPIS T, WIBOWO A, CHUNG D, FREEMAN A, WESSELS B, KANATZIDIS M. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection[J]. Cryst. Growth Des., 2013, 13(7): 2722-2727
doi: 10.1021/cg400645t
KIESLICH G, SUN S, CHEETTHAM A K. An extended tolerance factor approach for organic-inorganic perovskites[J]. Chem. Sci., 2015, 6(6): 3430-3433
doi: 10.1039/C5SC00961H
SHAN X Y. Regulation of interface carrier behavior in perovskite solar cells[D]. Anhui: University of Science and Technology of China, 2021: 115
LI J D, SONG J, WU J H, XU Y, DENG C Y, SONG Z Y, WANG X B, DU Y T, CHEN Q, LI R S, SUN W H, LAN Z. Surface defect passivation by 1, 8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells[J]. Chem. Eng. J., 2022, 449: 137806
doi: 10.1016/j.cej.2022.137806
LÜ J. Study on interface modification effecting on the performance of organic solar cells[D]. Shaanxi: Shaanxi University of Science and Technology, 2017: 79
YAN J D, DING L M, YANG A F, YANG T, REN H X. The frontiers and trends of research on perovskite solar cells[J]. Science and Technology of China, 2019(1): 4-6
CUI L F, HE B L, DING Y, ZHU J W, YAO X P, TI J J, CHEN H Y, DUAN Y Y, TANG Q W. Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Chem. Eng. J., 2022, 431: 134193
CAO X B, ZHANG G S, CAI Y F, JIANG L, CHEN Y, HE X, ZENG Q G, JIA Y, XING G C, WEI J Q. Enhanced performance of CsPbBr3 perovskite solar cells by reducing the conduction band offsets via a Sr-modified TiO2 layer[J]. Appl. Surf. Sci., 2020, 529: 147119
WANG J J, SUN L J, XU Y T. Preparation and properties of perovskite solar cells based on interfacial modification[J]. Technology & Development of Chemical, 2022, 51(3): 28-31
ZOU Y, LI Z, CHEN H H, LIU Y C, TONG A L, YAN H Y, HE R W, HUA G X, ZENG W D, SUN W H. Effect of interfacial modification for TiO2-based planar perovskite solar cells using NaTFSI[J]. Chin. J. Lumin., 2021, 42(5): 682-690
YAN J, HOU S, LI X, DONG J J, ZOU L, YANG M L, XING J, LIU H, HAO H Y. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy[J]. Sol. Energy Mater. Sol. Cells, 2022, 234: 111420
WANG G Q, DONG W N, GURUNG A, CHEN K, WU F, HE Q Q, PATHAK R, QIAO Q Q. Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer[J]. J. Power Sources, 2019, 432: 48-54
ABASHT B, ASL S K, AGHAJANI H, ASGARI A. Enhanced performance of ambient-air processed CsPbBr3 perovskite light-emitting electrochemical cells via synergistic incorporation of dual additives[J]. J. Alloy. Compd., 2024, 1005: 176113
WU L, CHEN J L, ZENG Y X, ZHAO W, WU Z H, JU J Y, HUANG J C, PENG Z Y, CHEN J. Multifunctional interface modification of tetrabutylammonium hexafluorophosphate to all-inorganic CsPbI2Br perovskite solar cells[J]. J. Chin. Ceram. Soc., 2024, 52(1): 75-88
SHAO M T, LIN P, CUI C. Influence of BaSnO3/perovskite interface modification on the performance of perovskite solar cells[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2023, 49(1): 50-58
KUBLITSKIl J, HOFACKER A, BOROUJENI B K, BENDUHN J, NIKOLIS V C, KAISER C, SPOLTORE D, KLEEMANN H, FISCHER A, ELLINGER F, VANDEWAL K, LEO K. Reverse dark current in organic photodetectors and the major role of traps as source of noise[J]. Nat. Commun., 2021, 12(1): 551
DUAN J L, ZHAO Y Y, YANG X Y, WANG Y D, HE B L, TANG Q W. Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V[J]. Adv. Energy Mater., 2018, 8(31): 1802346
WANG S L, WANG P Y, CHEN B B, LI R J, REN N Y, LI Y C, SHI B, HUANG Q, ZHAO Y, GRATZEL M, ZHANG X D. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346
YU F, LIU J, HUANG J H, XU P, LI C H, ZHENG Y X, TANG H R, ZOU J L. Efficient and stable wide-bandgap perovskite solar cells derived from a thermodynamic phase-pure intermediate[J]. Sol. RRL, 2022, 6(2): 2100906
YU F, LIU J, XU P, HUANG J H, LI C H, ZHENG Y X. High-quality all-inorganic CsPbI2Br thin films derived from phase-pure intermediate for efficient wide-bandgap perovskite solar cells[J]. J. Solid State Chem., 2023, 317: 123728
HUANG J H, XU P, Yu F, LIU J, SHIRAI Y, ZHANG X P, LI C H, SONG Y. A stabilized γ-CsPbI3 by poly(allylamine hydrochloride) for wide-band gap perovskites solar cells with enhanced performance[J]. J. Solid State Chem., 2023, 324: 124087
LIU B. Research on interface modification and spectral regulation of perovskite solar cells based on n-i-p structure[D]. Jilin: Jilin University, 2023: 141
WANG S B, CAO F X, SUN W H, WANG C Y, YAN Z L, WANG N, LAN Z, WU J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022, 22: 100614
BLOM P, MIHAILETCHI V, KOSTER L, MARKOV D. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007, 19(12): 1551-1566
LU K Y, WANG Y J, YUAN J Y, CUI Z Q, SHI G Z, SHI S H, HAN L, CHEN S, ZHANG Y N, LING X F, LIU Z K, CHI L F, CAO F X, FAN J, MA W L. Efficient PbS quantum dot solar cells employing a conventional structure[J]. J. Mater. Chem. A, 2017, 5(45): 23960-23966
YANG L, XU T W, BAI Z C, QIN S J. Improved open-circuit voltage of AZO/CsPbBr3/carbon structure perovskite solar cells by an Al-doped ZnO electron transport layer[J]. J. Phys. Chem. C, 2023, 127(15): 7492-7500
XIE G X, LU X C, DUAN J L, DONG Y, JIANG X R, TU F Z, DUAN Y Y, TANG Q W. Alkali chloride doped SnO2 electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr3 perovskite solar cells[J]. J. Mater. Chem. A, 2021, 9(26): 15003-15011
ZHU J W, TANG M X, HE B L, ZHANG W Y, TANG Q W. Improved charge extraction through interface engineering for 10.12% efficiency and stable CsPbBr3 perovskite solar cells[J]. J. Mater. Chem. A, 2020, 8(40): 20987-20997
TI J J, ZHU J W, HE B L, ZONG Z H, YAO X P, TUI R, HUANG H, CHEN C, CHEN H Y, DUAN Y Y, TANG Q W. A "double-sided tape" modifier bridging the TiO2/perovskite buried interface for efficient and stable all-inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2022, 10(12): 6649-6661
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Inset: corresponding equivalent circuits.