Citation: Xiaoyao YIN, Wenhao ZHU, Puyao SHI, Zongsheng LI, Yichao WANG, Nengmin ZHU, Yang WANG, Weihai SUN. Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309 shu

Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 21 August 2024
    Revised Date: 19 December 2024

Figures(9)

  • To address the issue of charge carrier non-radiative recombination in CsPbBr3 perovskite solar cells, which limits the improvement of their photoelectric conversion efficiency, we propose a method of spin-coating a 1.5 mg·mL-1 SnCl2 solution onto the TiO2 surface to effectively enhance the crystallinity and surface morphology of the perovskite film, thereby reducing non-radiative recombination of photogenerated carriers and improving carrier extraction and transport capabilities. Experimental results showed that modifying the TiO2 surface with SnCl2 increased the device′s maximum open-circuit voltage (VOC) to 1.59 V, short-circuit current density (JSC) to 7.62 mA·cm-2, and fill factor (FF) of 81.35%. At the same time, the photoelectric conversion efficiency (PCE) improved from 8.01% to 9.92%.
  • 加载中
    1. [1]

      ZHANG W H, PENG X C, FENG X D. Recent progress of perovskite solar cells[J]. Electronic Components and Materials, 2014, 33(8): 7-11

    2. [2]

      ZHAO P, OUYANG X P. An overview of perovskite solar cell simulation based on drift-diffusion theory[J]. Modern Applied Physics, 2020, 11(1): 4-12

    3. [3]

      YANG W C, YAO Y, WU C Q. Recombination mechanism of electron holes in perovskite solar cells and their effect on open-circuit voltage[C]//Photochemistry Committee of Chinese Renewable Energy Society. Proceedings of the 2nd Symposium on Novel Solar Cells: Vol. 1. [S.l.]: [s.n.], 2015.

    4. [4]

      HUANG C H. Research status of light absorption layer in carbon-based perovskite solar cells[J]. Modern Chemical Research, 2018(12): 141-142

    5. [5]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051  doi: 10.1021/ja809598r

    6. [6]

      QIU L B. Built-in supramolecular complex improving the environmental safety and stability of perovskite solar cells by largely reducing lead toxicity[J]. Sci. Bull., 2023, 68(27): 3546-3548

    7. [7]

      MENG X W. Preparation and performance optimization of cesium-based all-inorganic perovskite solar cells[D]. Jilin: Jilin University, 2021: 107

    8. [8]

      WU T H, QIN Z Z, WANG Y B, WU Y Z, CHEN W, ZHANG S F, CAI M L, DAI S Y, ZHANG J, LIU J. The main progress of perovskite solar cells in 2020—2021[J]. Nano-Micro Lett., 2021, 13: 1-18  doi: 10.1007/s40820-020-00525-y

    9. [9]

      YU B C, ZHANG H Y, WU J H, LI Y S, LI H S, LI Y M, SHI J J, WU H J, LI D M, LUO Y H, MENG Q B. Solvent-engineering toward CsPb(IxBr1-x)3 films for high-performance inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2018, 6(40): 19810-19816  doi: 10.1039/C8TA07968D

    10. [10]

      YANG Y, MA S P, LUO Y, LIN F Y, ZHU L, GUO X Y. Multidimensional CsPbX3 inorganic perovskite materials: Synthesis and solar cells application[J]. Prog. Chem., 2021, 33(5): 779-801

    11. [11]

      CHANG X W, LI W P, ZHU L Q, LIU H C, GENG H F, XIANG S S, LIU J M, CHEN H N. Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33649-33655  doi: 10.1021/acsami.6b11393

    12. [12]

      STOUMPOS C, MALLIAKAS C, PETERS J, LIU Z, SEBASTIAN M, IM J, CHASAPIS T, WIBOWO A, CHUNG D, FREEMAN A, WESSELS B, KANATZIDIS M. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection[J]. Cryst. Growth Des., 2013, 13(7): 2722-2727  doi: 10.1021/cg400645t

    13. [13]

      KIESLICH G, SUN S, CHEETTHAM A K. An extended tolerance factor approach for organic-inorganic perovskites[J]. Chem. Sci., 2015, 6(6): 3430-3433  doi: 10.1039/C5SC00961H

    14. [14]

      SHAN X Y. Regulation of interface carrier behavior in perovskite solar cells[D]. Anhui: University of Science and Technology of China, 2021: 115

    15. [15]

      LI J D, SONG J, WU J H, XU Y, DENG C Y, SONG Z Y, WANG X B, DU Y T, CHEN Q, LI R S, SUN W H, LAN Z. Surface defect passivation by 1, 8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells[J]. Chem. Eng. J., 2022, 449: 137806  doi: 10.1016/j.cej.2022.137806

    16. [16]

      LÜ J. Study on interface modification effecting on the performance of organic solar cells[D]. Shaanxi: Shaanxi University of Science and Technology, 2017: 79

    17. [17]

      YAN J D, DING L M, YANG A F, YANG T, REN H X. The frontiers and trends of research on perovskite solar cells[J]. Science and Technology of China, 2019(1): 4-6

    18. [18]

      CUI L F, HE B L, DING Y, ZHU J W, YAO X P, TI J J, CHEN H Y, DUAN Y Y, TANG Q W. Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Chem. Eng. J., 2022, 431: 134193
       

    19. [19]

      CAO X B, ZHANG G S, CAI Y F, JIANG L, CHEN Y, HE X, ZENG Q G, JIA Y, XING G C, WEI J Q. Enhanced performance of CsPbBr3 perovskite solar cells by reducing the conduction band offsets via a Sr-modified TiO2 layer[J]. Appl. Surf. Sci., 2020, 529: 147119
       

    20. [20]

      WANG J J, SUN L J, XU Y T. Preparation and properties of perovskite solar cells based on interfacial modification[J]. Technology & Development of Chemical, 2022, 51(3): 28-31

    21. [21]

      ZOU Y, LI Z, CHEN H H, LIU Y C, TONG A L, YAN H Y, HE R W, HUA G X, ZENG W D, SUN W H. Effect of interfacial modification for TiO2-based planar perovskite solar cells using NaTFSI[J]. Chin. J. Lumin., 2021, 42(5): 682-690

    22. [22]

      YAN J, HOU S, LI X, DONG J J, ZOU L, YANG M L, XING J, LIU H, HAO H Y. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy[J]. Sol. Energy Mater. Sol. Cells, 2022, 234: 111420
       

    23. [23]

      WANG G Q, DONG W N, GURUNG A, CHEN K, WU F, HE Q Q, PATHAK R, QIAO Q Q. Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer[J]. J. Power Sources, 2019, 432: 48-54
       

    24. [24]

      ABASHT B, ASL S K, AGHAJANI H, ASGARI A. Enhanced performance of ambient-air processed CsPbBr3 perovskite light-emitting electrochemical cells via synergistic incorporation of dual additives[J]. J. Alloy. Compd., 2024, 1005: 176113

    25. [25]

      WU L, CHEN J L, ZENG Y X, ZHAO W, WU Z H, JU J Y, HUANG J C, PENG Z Y, CHEN J. Multifunctional interface modification of tetrabutylammonium hexafluorophosphate to all-inorganic CsPbI2Br perovskite solar cells[J]. J. Chin. Ceram. Soc., 2024, 52(1): 75-88

    26. [26]

      SHAO M T, LIN P, CUI C. Influence of BaSnO3/perovskite interface modification on the performance of perovskite solar cells[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2023, 49(1): 50-58

    27. [27]

      KUBLITSKIl J, HOFACKER A, BOROUJENI B K, BENDUHN J, NIKOLIS V C, KAISER C, SPOLTORE D, KLEEMANN H, FISCHER A, ELLINGER F, VANDEWAL K, LEO K. Reverse dark current in organic photodetectors and the major role of traps as source of noise[J]. Nat. Commun., 2021, 12(1): 551
       

    28. [28]

      DUAN J L, ZHAO Y Y, YANG X Y, WANG Y D, HE B L, TANG Q W. Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V[J]. Adv. Energy Mater., 2018, 8(31): 1802346

    29. [29]

      WANG S L, WANG P Y, CHEN B B, LI R J, REN N Y, LI Y C, SHI B, HUANG Q, ZHAO Y, GRATZEL M, ZHANG X D. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346

    30. [30]

      YU F, LIU J, HUANG J H, XU P, LI C H, ZHENG Y X, TANG H R, ZOU J L. Efficient and stable wide-bandgap perovskite solar cells derived from a thermodynamic phase-pure intermediate[J]. Sol. RRL, 2022, 6(2): 2100906

    31. [31]

      YU F, LIU J, XU P, HUANG J H, LI C H, ZHENG Y X. High-quality all-inorganic CsPbI2Br thin films derived from phase-pure intermediate for efficient wide-bandgap perovskite solar cells[J]. J. Solid State Chem., 2023, 317: 123728

    32. [32]

      HUANG J H, XU P, Yu F, LIU J, SHIRAI Y, ZHANG X P, LI C H, SONG Y. A stabilized γ-CsPbI3 by poly(allylamine hydrochloride) for wide-band gap perovskites solar cells with enhanced performance[J]. J. Solid State Chem., 2023, 324: 124087
       

    33. [33]

      LIU B. Research on interface modification and spectral regulation of perovskite solar cells based on n-i-p structure[D]. Jilin: Jilin University, 2023: 141

    34. [34]

      WANG S B, CAO F X, SUN W H, WANG C Y, YAN Z L, WANG N, LAN Z, WU J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022, 22: 100614
       

    35. [35]

      BLOM P, MIHAILETCHI V, KOSTER L, MARKOV D. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007, 19(12): 1551-1566
       

    36. [36]

      LU K Y, WANG Y J, YUAN J Y, CUI Z Q, SHI G Z, SHI S H, HAN L, CHEN S, ZHANG Y N, LING X F, LIU Z K, CHI L F, CAO F X, FAN J, MA W L. Efficient PbS quantum dot solar cells employing a conventional structure[J]. J. Mater. Chem. A, 2017, 5(45): 23960-23966

    37. [37]

      YANG L, XU T W, BAI Z C, QIN S J. Improved open-circuit voltage of AZO/CsPbBr3/carbon structure perovskite solar cells by an Al-doped ZnO electron transport layer[J]. J. Phys. Chem. C, 2023, 127(15): 7492-7500

    38. [38]

      XIE G X, LU X C, DUAN J L, DONG Y, JIANG X R, TU F Z, DUAN Y Y, TANG Q W. Alkali chloride doped SnO2 electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr3 perovskite solar cells[J]. J. Mater. Chem. A, 2021, 9(26): 15003-15011

    39. [39]

      ZHU J W, TANG M X, HE B L, ZHANG W Y, TANG Q W. Improved charge extraction through interface engineering for 10.12% efficiency and stable CsPbBr3 perovskite solar cells[J]. J. Mater. Chem. A, 2020, 8(40): 20987-20997

    40. [40]

      TI J J, ZHU J W, HE B L, ZONG Z H, YAO X P, TUI R, HUANG H, CHEN C, CHEN H Y, DUAN Y Y, TANG Q W. A "double-sided tape" modifier bridging the TiO2/perovskite buried interface for efficient and stable all-inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2022, 10(12): 6649-6661

  • 加载中
    1. [1]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    19. [19]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(1)
  • Abstract views(310)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return