Citation: Yongzhi LI, Han ZHANG, Gangding WANG, Yanwei SUI, Lei HOU, Yaoyu WANG. A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307 shu

A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution

Figures(6)

  • Herein, a two dimensional europium based metal organic framework [Eu(dtztp)0.5(H2dtztp)0.5(DMF)3] · 0.113H2O (Eu -MOF) was obtained through self assembly of 2, 5 bis(2H tetrazol 5 yl) terephthalic acid ligand (H4dtztp) with Eu3+ under solvent thermal conditions, where DMF is N, N-dimethylformamide. The spatial structure, phase purity, and thermal stability of Eu-MOF were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, and thermogravimetric analysis. Meanwhile, the solid-state fluorescence and antibiotic detection functions of Eu-MOF were also investigated. The results show that Eu-MOF crystallizes in triclinic system, \begin{document}$P \overline{1}$\end{document} space group with cell parameters: a=1.018(7) nm, b=1.103(8) nm, c=1.252(9) nm, α=115.963(2)°, β=92.604(2)°, γ=96.556(2)°. Eu-MOF displayed obvious red luminescence under ultraviolet light at 365 nm, as well as showed highly selective detection for nitrofurantoin (NFT) and nitrofurazone (NFZ) in aqueous solution with detection limits of 3.88 and 5.44 μmol·L-1, respectively. The fluorescence detection mechanism of Eu-MOF for NFT and NFZ was revealed by the combination of experiment and theoretical calculation.
  • 加载中
    1. [1]

      YANG G L, JIANG X L, XU H, ZHAO B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021,172005327. doi: 10.1002/smll.202005327

    2. [2]

      CHEN L, WU Y, ZHANG W C, SHEN W, SONG J B. Imaging-guided antibacterial based on gold nanocrystals and assemblies[J]. Small Methods, 2024,82301165. doi: 10.1002/smtd.202301165

    3. [3]

      XIE Y, JIAO Z H, DONG J, HOU S L, ZHAO B. Luminescent sensor with high sensitivity and selectivity for amikacin detection in a serum using a unique gallium-organic framework[J]. Inorg. Chem., 2023,62(13):5168-5175. doi: 10.1021/acs.inorgchem.3c00019

    4. [4]

      QIU X C, FAN C X, BAI R, TANG Z Y, GU Y, LI C M. Advances in applications of nanoenzymes in antibiotic detection[J]. Chin. Sci. Bull., 2024,69:553-564.

    5. [5]

      LI Y, YIN L P, LIU D, LIANG Y Q, PAN Y. Current situation of antibiotic contamination in China and the effect on plankton[J]. Chinese Journal of Applied Ecology, 2023,34(3):853-864.

    6. [6]

      QIAO M, YING G G, SINGER A C, ZHU Y G. Review of antibiotic resistance in China and its environment[J]. Environ. Int., 2018,110:160-172. doi: 10.1016/j.envint.2017.10.016

    7. [7]

      LIU X Y, LIU B, LI G H, LIU Y L. Two anthracene-based metal- organic frameworks for highly effective photodegradation and luminescent detection in water[J]. J. Mater. Chem. A, 2018,6:17177-17185. doi: 10.1039/C8TA03807D

    8. [8]

      WANG B, LV X L, FENG D W, XIE L H, ZHANG J, LI M, XIE Y B, LI J R, ZHOU H C. Highly stable Zr􀃯-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    9. [9]

      CHENG J, LI Y F, ZHONG J, LU Z W, WANG G T, SUN M M, JIANG Y Y, ZOU P, WANG X X, ZHAO Q B, WANG Y Y, RAO H B. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone[J]. Chem. Eng. J., 2020,398125664. doi: 10.1016/j.cej.2020.125664

    10. [10]

      MOHAN B, PRIYANKA , SINGH G, CHAUHAN A, POMBEIRO A J L, REN P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. J. Hazard. Mater., 2023,453131324. doi: 10.1016/j.jhazmat.2023.131324

    11. [11]

      MARIMUTHU M, ARUMUGAM S S, SABARINATHAN D, LI H H, CHEN Q S. Metal organic framework based fluorescence sensor for detection of antibiotics[J]. Trends Food Sci. Technol., 2021,116:1002-1028. doi: 10.1016/j.tifs.2021.08.022

    12. [12]

      LI J, YU C F, WU Y N, ZHU Y J, XU J J, WANG Y, WANG H T, GUO M T, LI F T. Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification[J]. Environ. Int., 2019,125:135-141. doi: 10.1016/j.envint.2019.01.033

    13. [13]

      ZHANG Q, REN S R, XUE S. Investigation of fusidic acid as a chiral selector in capillary electrophoresis[J]. Sep. Purif. Technol., 2020,242116768. doi: 10.1016/j.seppur.2020.116768

    14. [14]

      ZAFAR R, BASHIR S, NABI D, ARSHAD M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan[J]. Sci. Total Environ., 2021,764142596. doi: 10.1016/j.scitotenv.2020.142596

    15. [15]

      TABRIZCHI M, LBEIGI V. Detection of explosives by positive corona discharge ion mobility spectrometry[J]. J. Hazard. Mater., 2010,176:692-696. doi: 10.1016/j.jhazmat.2009.11.087

    16. [16]

      ZHANG Y T, ZHANG Z J, SUN Y H. Determination of tetracyclines residues in milk using high performance liquid chromatography with chemiluminescence detection[J]. Acta Chim. Sin., 2006,64(24):2461-2466. doi: 10.3321/j.issn:0567-7351.2006.24.013

    17. [17]

      XING K, FAN R Q, DU X, ZHENG X B, ZHOU X S, GAI S, WANG P, YANG Y L. Dye-insertion dynamic breathing MOF as dual-emission platform for antibiotics detection and logic molecular operation[J]. Sens. Actuators B‒Chem., 2019,288:307-315. doi: 10.1016/j.snb.2019.03.011

    18. [18]

      WANG C Y, WANG C C, ZHANG X W, REN X Y, YU B, WANG P, ZHAO Z X, FU H F. A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics[J]. Chin. Chem. Lett., 2022,33:1353-1357. doi: 10.1016/j.cclet.2021.08.095

    19. [19]

      TAN G, JIA R Q, ZHAO X, GUO Y Q, ZHANG L L, WANG X H, WANG J G, FENG X, LI B, WANG L Y. Fabrication of two isomorphic and hyperstable rare earth-based metal-organic frameworks with efficient ratiometric probe and photocatalytic performances[J]. Inorg. Chem., 2022,61(30):11866-11878. doi: 10.1021/acs.inorgchem.2c01619

    20. [20]

      QIN Z S, DONG W W, ZHAO J, WU Y P, ZHANG Q C, LI D S. A water-stable Tb(Ⅲ)-based metal-organic gel (MOG) for detection of antibiotics and explosives[J]. Inorg. Chem. Front., 2018,5:120-126. doi: 10.1039/C7QI00495H

    21. [21]

      CHU Q Q, ZHANG B, YANG Z P, ZHOU H F, MU H B, ZHANG W Y, LIU B, WANG Y Y. Stable indium pyridylcarboxylate framework with highly selective adsorption of cationic dyes and effective nitenpyram detection[J]. Inorg. Chem., 2021,60(7):5232-5239. doi: 10.1021/acs.inorgchem.1c00232

    22. [22]

      WEN L L, XU X Y, LV K, HUANG Y M, ZHENG X F, ZHOU L, SUN R Q, LI D F. Metal-organic frameworks constructed from D-camphor acid: Bifunctional properties related to luminescence sensing and liquid-phase separation[J]. ACS Appl. Mater. Interfaces, 2015,7(7):4449-4455. doi: 10.1021/acsami.5b00160

    23. [23]

      ZHAO D, LIU X H, ZHAO Y, WANG P, LIU Y, AZAM M, Al-RESAYES S I, LU Y, SUN W Y. Luminescent Cd(Ⅱ)-organic frameworks with chelating NH2 sites for selective detection of Fe(Ⅲ) and antibiotics[J]. J. Mater. Chem. A, 2017,5:15797-15807. doi: 10.1039/C7TA03849F

    24. [24]

      BONDI A. van der waals volumes and radii[J]. J. Phys. Chem., 1964,68(3):441-451. doi: 10.1021/j100785a001

    25. [25]

      WANG G D, LI Y Z, SHI W J, ZHANG B, HOU L, WANG Y Y. A robust cluster-based Eu-MOF as multi‑functional fluorescence sensor for detection of antibiotics and pesticides in water[J]. Sens. Actuators B‒Chem., 2021,331129377. doi: 10.1016/j.snb.2020.129377

    26. [26]

      HE H M, ZHU Q Q, SUN F X, ZHU G S. Two 3D metal-organic frameworks based on Co and Zn clusters for knoevenagel condensation reaction and highly selective luminescence sensing[J]. Cryst. Growth Des., 2018,18(9):5573-5581. doi: 10.1021/acs.cgd.8b00867

    27. [27]

      LIU Y, FAN G, GAO F Q, HOU L, ZHU D Y, WANG Y Y. A terbium complex for the detection of dimetridazole and tetracycline in an aqueous solution[J]. Chinese J. Inorg. Chem., 2023,39:1235-1243. doi: 10.11862/CJIC.2023.116

    28. [28]

      GUO F, SU C H, FAN Y H, SHI W B. An excellently stable Tb- organic framework with outstanding stability as a rapid, reversible, and multi-responsive luminescent sensor in water[J]. Dalton Trans., 2019,48:12910-12917. doi: 10.1039/C9DT02921D

    29. [29]

      LI C H, YANG W X, ZHANG X S, HAN Y, TANG W Z, YUE T L, LI Z H. A 3D hierarchical dual-metal-organic framework heterostructure up-regulating the pre-concentration effect for ultrasensitive fluorescence detection of tetracycline antibiotics[J]. J. Mater. Chem. C, 2020,8:2054-2064. doi: 10.1039/C9TC05941E

    30. [30]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    31. [31]

      LI Y Z, WANG G D, LU Y K, HOU L, WANG Y Y, ZHU Z H. A multi-functional In(Ⅲ)-organic framework for acetylene separation, carbon dioxide utilization, and antibiotic detection in water[J]. Inorg. Chem., 2020,59:15302-15311. doi: 10.1021/acs.inorgchem.0c02291

    32. [32]

      NAGARKAR S S, JOARDER B, CHAUDHARI A K, MUKHERJEE S, GHOSH S K. Highly selective detection of nitro explosives by a luminescent metal-organic framework[J]. Angew. Chem.‒Int. Ed., 2013,52(10):2881-2885. doi: 10.1002/anie.201208885

    33. [33]

      YU M K, XIE Y, WANG X Y, LI Y X, LI G M. Highly water-stabledye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J]. ACS Appl. Mater. Interfaces, 2019,11(23):21201-21210. doi: 10.1021/acsami.9b05815

    34. [34]

      NAGARKAR S S, DESAI A V, GHOSH S K. A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase[J]. Chem. Commun., 2014,50:8915-8918. doi: 10.1039/C4CC03053B

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(0)
  • Abstract views(340)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return