Citation: Jing REN, Ruikui YAN, Xiaoli CHEN, Huali CUI, Hua YANG, Jijiang WANG. Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287 shu

Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer

  • Corresponding author: Xiaoli CHEN, chenxiaoli003@163.com
  • Received Date: 30 July 2024
    Revised Date: 18 December 2024

Figures(7)

  • A coordination polymer {[Cd(H2dpa)(bpy)]·3H2O}n (Cd-CP) was designed and hydrothermal synthesized based on 4-(2, 4-dicarboxyphenoxy) phthalic acid (H4dpa), 2, 2′-bipyridine (bpy) and Cd(NO3)2·4H2O. The structure was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, and infrared spectroscopy. Cd-CP belongs to the monoclinic crystal system with the P21/c space group and performs in a 1D double-chain structure. The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding. Thermogravimetric analysis shows that Cd-CP has good thermal stability. Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions (Fe3+ and Zn2+), 2, 4, 6-trinitrophenylhydrazine (TRI), and pyrimethanil (Pth). Interestingly, when Cd-CP was used for fluorescence detection of metal ions, it was found to have a fluorescence quenching effect on Fe3+ but had an obvious enhancement effect on Zn2+. Therefore, we designed an "on-off-on" logic gate. In addition, the mechanism of fluorescence sensing has been deeply explored.
  • 加载中
    1. [1]

      WU G, MA J, LI S, LI J, WANG X Y, ZHANG Z Y, CHEN L X. Functional metal-organic frameworks as adsorbents used for water decontamination: Design strategies and applications[J]. J. Mater. Chem. A, 2023, 11(13): 6747-6771  doi: 10.1039/D3TA00279A

    2. [2]

      GAO Q, XU J, BU X H. Recent advances about metal-organic frameworks in the removal of pollutants from wastewater[J]. Coord. Chem. Rev., 2019, 378: 17-31  doi: 10.1016/j.ccr.2018.03.015

    3. [3]

      ZHANG S, WANG J Q, ZHANG Y, MA J Z, HUANG L T Y, YU S J, CHEN L, SONG G, QIU M Q, WANG X X. Applications of water- stable metal-organic frameworks in the removal of water pollutants: A review[J]. Environ. Pollut., 2021, 291: 118076  doi: 10.1016/j.envpol.2021.118076

    4. [4]

      ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chem. Rev., 2020, 120(16): 8378-8415  doi: 10.1021/acs.chemrev.9b00797

    5. [5]

      SARAVANAN A, KUMAR P S, RANGASAMY G. Removal of toxic pollutants from industrial effluent: Sustainable approach and recent advances in metal organic framework[J]. Ind. Eng. Chem. Res., 2022, 61(43): 15754-15765
       

    6. [6]

      HELAL A, CORDOVA K E, ARAFAT M E, USMAN M, YAMANI Z H. Defect-engineering a metal-organic framework for CO2 fixation in the synthesis of bioactive oxazolidinones[J]. Inorg. Chem. Front., 2020, 7(19): 3571-3577  doi: 10.1039/D0QI00496K

    7. [7]

      LUSTIG W P, TEAT S J, LI J. Improving LMOF luminescence quantum yield through guest-mediated rigidification[J]. J. Mater. Chem. C, 2019, 7(46): 14739-14744  doi: 10.1039/C9TC05216J

    8. [8]

      PATRA S, MAITY N. Recent advances in (hetero) dimetallic systems towards tandem catalysis[J]. Coord. Chem. Rev., 2021, 434: 213803  doi: 10.1016/j.ccr.2021.213803

    9. [9]

      LIU L, CHEN X L, CAI M, YAN R K, CUI H L, YANG H, WANG J J. Dye@MOF composites (RhB@1): Highly sensitive dual emission sensor for the detection of pesticides, Fe3+ and ascorbic acid[J]. Chin. Chem. Lett., 2023, 34(10): 108411  doi: 10.1016/j.cclet.2023.108411

    10. [10]

      BAI W B, QIN G X, WANG J, LI L, NI Y H. 2-Aminoterephthalic acid co-coordinated Co MOF fluorescent probe for highly selective detection of the organophosphorus pesticides with p-nitrophenyl group in water systems[J]. Dyes Pigment., 2021, 193: 109473  doi: 10.1016/j.dyepig.2021.109473

    11. [11]

      LIU Q Q, YUE K F, WENG X J, WANG Y. Luminescence sensing and supercapacitor performances of a new (3, 3)-connected Cd-MOF[J]. CrystEngComm, 2019, 21(41): 6186-6195  doi: 10.1039/C9CE01087D

    12. [12]

      CHEN W T, LI L Y, LI X X, LIN L D, WANG G Q, ZHANG Z, LI L Y, YU Y. Layered rare earth organic framework as highly efficient luminescent matrix: The crystal structure, optical spectroscopy, electronic transition, and luminescent sensing properties[J]. Cryst. Growth Des., 2019, 19(8): 4754-4764  doi: 10.1021/acs.cgd.9b00635

    13. [13]

      XU W H, DAI Z Q, HUANG X X, JIANG G Z, CHANG M, WANG C Y, LAI T T, LIU H M, SUN R K, LI C Y. High sensitivity in quantitative analysis of mixed-size polystyrene micro/nanoplastics in one step[J]. Sci. Total Environ., 2024, 934: 173314  doi: 10.1016/j.scitotenv.2024.173314

    14. [14]

      OGULU D, BORA P P, BIHANI M, SHARMA S, ANSARI T N, WILSON A J, JASINSKI J B, GALLOU F, HANDA S. Phosphine ligand-free bimetallic Ni(0) Pd(0) nanoparticles as a catalyst for facile, general, sustainable, and highly selective 1, 4-reductions in aqueous micelles[J]. ACS Appl. Mater. Interfaces, 2022, 14(5): 6754-6761  doi: 10.1021/acsami.1c22282

    15. [15]

      LUO Y, GENG N B, CHEN S S, CHENG L, ZHANG H J, CHEN J P. Metabolomic interference induced by short-chain chlorinated paraffins in human normal hepatic cells[J]. Chin. J. Chromatogr., 2024, 42(2): 176-184

    16. [16]

      KALWEIT C, BERGER S, KAMPFE A, RAPP T. Quantification and stability assessment of 7, 9-di-tert-butyl-1-oxaspiro(4, 5)deca-6, 9- diene-2, 8-dione leaching from cross-linked polyethylene pipes using gas and liquid chromatography[J]. Water Res., 2023, 243: 120306  doi: 10.1016/j.watres.2023.120306

    17. [17]

      TORRES M N, ALMIRALL J R. Evaluation of capillary microextraction of volatiles (CMV) coupled to a person-portable gas chromatograph mass spectrometer (GC-MS) for the analysis of gasoline residues[J]. Forensic Chem., 2022, 27: 100397  doi: 10.1016/j.forc.2021.100397

    18. [18]

      YUAN Y L, LIN X T, LI T H, PANG T Y, DONG Y R, ZHUO R J, WANG Q Q, CAO Y T, GAN N. A solid phase microextraction arrow with zirconium metal-organic framework/molybdenum disulfide coating coupled with gas chromatography-mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples[J], J. Chromatogr. A, 2019, 1592: 9-18  doi: 10.1016/j.chroma.2019.01.066

    19. [19]

      NOORPOOR Z. The needle trap extraction capability of a zinc-based metal organic framework with a nitrogen rich ligand[J]. J. Coord. Chem., 2021, 74(13): 2213-2226  doi: 10.1080/00958972.2021.1962524

    20. [20]

      CHAVES-SIERRA C, RODRIGUEZ-CRUZ M C, MEJIA- ALVARADO F S, RAMÍREZ-HIGUERA C, MEJÍA-ESLAVA A, ROMERO H M. Identification of 'Candidatus Liberibacter asiaticus', the huanglongbing bacterium, in citrus from Colombia[J]. Plant Dis., 2024, 108(5): 1169-1173  doi: 10.1094/PDIS-10-23-2003-SC

    21. [21]

      SUN C, CHENG Y, PAN Y, YANG J, WANG X, XIA F. Efficient polymerase chain reaction assisted by metal-organic frameworks[J]. Chem. Sci., 2020, 11(3): 797-802  doi: 10.1039/C9SC03202A

    22. [22]

      LI Y, ETTAH U, JACQUES S, GAIKWAD H, MONTE A, DYLLA L, GUNTUPALLI S, MOGHIMI S M, SIMBERG D. Optimized enzyme-linked immunosorbent assay for anti-PEG antibody detection in healthy donors and patients treated with PEGylated liposomal doxorubicin[J]. Mol. Pharm., 2024, 21(6): 3053-3060  doi: 10.1021/acs.molpharmaceut.4c00278

    23. [23]

      ZHAND S, RAZMJOU A, AZADI S, BAZAZ S R, SHRESTHA J, JAHROMI M A F, WARKIANIM M E. Metal-organic framework- enhanced ELISA platform for ultrasensitive detection of PD-L1[J]. ACS Appl. Bio Mater., 2020, 3(7): 4148-4158  doi: 10.1021/acsabm.0c00227

    24. [24]

      LI C, ZONG C, LIU Y, LIU Z, WANG K N, YU X. Probing mitochondrial damage using a fluorescent probe with mitochondria-to-nucleolus translocation[J]. Chin. Chem. Lett., 2024, 35(1): 378-382
       

    25. [25]

      YANG X, CHENG L, ZHAO Y, MA H, SONG H, YANG X, ZHANG Y. Aggregation-induced emission-active iridium(Ⅲ)-based mitochondria-targeting nanoparticle for two-photon imaging-guided photodynamic therapy[J]. J. Colloid Interface Sci., 2024, 659: 320-329  doi: 10.1016/j.jcis.2023.12.172

    26. [26]

      WANG C, ZHANG N, HOU C Y, HAN X X, LIU C H, XING Y H, BAI F Y, SUN L X. Transition metal complexes constructed by pyridine-amino acid: Fluorescence sensing and catalytic properties[J]. Transition Met. Chem., 2020, 45: 423-433  doi: 10.1007/s11243-020-00394-9

    27. [27]

      ZHANG J F, ZHANG J W, LIU R R, XIA H Y, LIU Z Q. Ni(Ⅱ)-metal-organic framework based on 3, 3′-di(1H-imidazol-1-yl)-1, 1′-biphenyl: Synthesis, structure and luminescence detection[J]. Inorg. Chim. Acta, 2024: 121974

    28. [28]

      KAN C, WANG X, SHAO X, WU L, QIU S, ZHU J. A novel fluorescent probe of aluminum ions based on rhodamine derivatives and its application in biological imaging[J]. New J. Chem., 2021, 45(20): 8918-8924  doi: 10.1039/D1NJ01184G

    29. [29]

      LEI Y, GAO Y, XIAO Y, HUANG P, WU F Y. Zirconium-based metal-organic framework loaded agarose hydrogels for fluorescence turn-on detection of nerve agent simulant vapor[J]. Anal. Methods, 2023, 15(42): 5674-5682  doi: 10.1039/D3AY01539D

    30. [30]

      WANG Z, GUO L, TIAN J, HAN Y, ZHAI D, CUI L, ZHANG P S, ZHANG X W, YANG S Y, ZHANG L. A versatile MOF as an electrochemical/ fluorescence/colorimetric signal probe for the tri-modal detection of MMP-9 secretion in the extracellular matrix to identify the efficacy of chemotherapeutic drugs[J]. Anal. Chim. Acta, 2024, 1315: 342798  doi: 10.1016/j.aca.2024.342798

    31. [31]

      GUO J, FAN X Y, REN X F, WU S, ZHANG Y K, ZHANG W, HE Y C. Crystal structures, Hirshfeld surface analyses and optical properties of four new Cu(Ⅱ)-based coordination polymers[J]. Polyhedron, 2024, 261: 117143  doi: 10.1016/j.poly.2024.117143

    32. [32]

      FAN F X, FU L, CUI H G. Three robust luminescent Cd(Ⅱ) coordination polymers as multi-responsive fluorescent sensors for Cu2+, Hg2+, levofloxacin, and acetylacetone in water[J]. J. Mol. Struct., 2024, 1316: 139099  doi: 10.1016/j.molstruc.2024.139099

    33. [33]

      LIU L L, ZHANG R J, LI S Q, HU L, LIANG S, WANG L L, ZHOU N N, LIANG X, YANG X L, HAN Y S. Integrating selenium confinement in two-dimensional carbon matrix with Co catalysis for high-performance sodium-ion batteries[J]. Electrochim. Acta, 2024, 79: 143907
       

    34. [34]

      WANG T T, CHEN F F, AN H, CHEN K, GAO J K. Metal-organic-framework-derived boron and nitrogen dual-doped hollow mesoporous carbon for photo-thermal catalytic conversion of CO2[J]. J. Solid State Chem., 2024, 332: 124570  doi: 10.1016/j.jssc.2024.124570

    35. [35]

      ALAVIJEH R K, AKHBARI K. Cancer therapy by nano MIL-n series of metal-organic frameworks[J]. Coord. Chem. Rev., 2024, 503: 215643  doi: 10.1016/j.ccr.2023.215643

    36. [36]

      MA D W, WANG G, LU J S, ZENG X X, CHENG Y W, ZHANG Z W, CHEN Q. Multifunctional nano MOF drug delivery platform in combination therapy[J]. Eur. J. Med. Chem., 2023, 261: 115884  doi: 10.1016/j.ejmech.2023.115884

    37. [37]

      HUANG Z H, CHAI K G, KANG C J, KRISHNA R, ZHANG Z Q. Commensurate stacking within confined ultramicropores boosting acetylene storage capacity and separation efficiency[J]. Nano Res., 2023, 16(5): 7742-7748  doi: 10.1007/s12274-022-5346-7

    38. [38]

      ZHANG C, MA L, XI X, NIE Z. Adsorption and separation performance of tungsten and molybdenum on modified zirconium based metal organic frameworks UiO-66-CTAB[J]. J. Environ. Chem. Eng., 2024, 12(5): 113401  doi: 10.1016/j.jece.2024.113401

    39. [39]

      KILMOVSKIKH I I, EREMEEV S V, ESTYUNIN D A, FILNOV S O, SHIMADA K, GOLYASHOV V A, CHULKOV E V. Interfacing two-dimensional and magnetic topological insulators: Bi bilayer on MnBi2Te4-family materials[J]. Mater. Today Adv., 2024, 23: 100511  doi: 10.1016/j.mtadv.2024.100511

    40. [40]

      KHUNOU P B, NOMNGONGO N P, NYABA L. Application of MoS42- intercalated magnetic layered double hydroxide for preconcentration of cadmium and lead from water samples[J]. J. Hazard. Mater. Adv., 2024, 15: 100446

    41. [41]

      ZHANG Z, HAN W, QING J, MENG T, ZHOU W, DING L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples[J]. J. Hazard. Mater., 2024, 465: 133189  doi: 10.1016/j.jhazmat.2023.133189

    42. [42]

      DE OLIVEIRA A, GRIGOLETTO S, VIEIRA L F M A, AMORIM S J F, DE ABREU H A. Unveiling the adsorption mechanism of arsenic species in the MOF-74 through an in-silico approach targeting the development of adsorbents for polluted water treatment[J]. Chem. Phys. Lett., 2023, 831: 116884
       

    43. [43]

      LI W, ZHU Z, CHEN Q, LI J, TU M. Device fabrication and sensing mechanism in metal-organic framework-based chemical sensors[J]. Cell Rep. Phys. Sci., 2023, 4(12): 101679  doi: 10.1016/j.xcrp.2023.101679

    44. [44]

      ZHU X D, ZHANG K, WANG Y, LONG W W, SA R J, LIU T F, LÜ J. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater[J]. Inorg. Chem., 2018, 57(3): 1060-1065  doi: 10.1021/acs.inorgchem.7b02471

    45. [45]

      CHAISURIYA W, CHAINOK K, WANNARIT N. Crystal structure and Hirshfeld surface analysis of a new mononuclear copper(Ⅱ) complex: [Bis-(pyridin-2-yl-κN)amine](formato-κO)(m-hydroxy-benzoato-κ2O, O′) copper(Ⅱ)[J]. Acta Crystallogr. Sect. E, 2023, E79(12): 1115-1120

    46. [46]

      XIA N, CHANG Y, ZHOU Q, DING S, GAO F. An overview of the design of metal-organic frameworks-based fluorescent chemosensors and biosensors[J]. Biosensors, 2022, 12(11): 928-935

    47. [47]

      LAZARO I A, FORGAN R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coord. Chem. Rev., 2019, 380: 230-259
       

    48. [48]

      RUBIO-MARTINEZ M, AVCI-CAMUR C, THORNTON A W, IMAZ I, MASPOCH D, HILL M R. New synthetic routes towards MOF production at scale[J]. Chem. Soc. Rev., 2017, 46(11): 3453-3480
       

    49. [49]

      YAN R K, CHEN X L, CAI M, REN J, CUI H L, YANG H, WANG J J. Design, synthesis and fluorescence sensing properties of highly sensitive and multiresponsive lanthanide metal-organic skeletons[J]. Chinese J. Inorg. Chem., 2024, 40(4): 834-848  doi: 10.11862/CJIC.20230301

    50. [50]

      CAI M, WANG Z Y, CHEN X L, YAN R K, CUI H L, YANG H, WANG J J. Synthesis, structure and fluorescence sensing properties of zinc coordination polymer based on 4-(2, 4-dicarboxylic phenoxy) phthalic acid ligand[J]. Chinese J. Inorg. Chem., 2023, 39(7): 1379-1388

    51. [51]

      MA X L, HAN L M, ZHANG X Y, HAO Z H, YANG W, ZHANG Y H, WANG L. The multi-response zirconium fund is the identification of Fe3+, Cr2O72- ions and small organic molecules[J]. Chin. J. Org. Chem., 2020, 40(9): 2938-2948

    52. [52]

      JI C, LI WEN, ZHANG L R, HUA J, LIU Y L. Construction of Eu-MOF material and fluorescence detection of Fe3+ and nitroaromatic explosives[J]. Chem. J. Chinese Universities, 2024, 45(2): 135-143

    53. [53]

      BESHELI M E, RAHIMI R, FARAHANI Y D, SAFARIFARD V. A porous Ni-based metal-organic framework as a selective luminescent probe to Fe3+ metal ion and MeOH[J]. Inorg. Chim. Acta, 2019, 495: 118956
       

    54. [54]

      YAN R K, CHEN X L, REN J, CUI H L, YANG H, WANG J J. Synthesis of highly sensitive and multi-response Eu-MOF, fluorescence sensing properties and anti-counterfeiting applications[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024, 322: 124855
       

    55. [55]

      HE J, XU J, YIN J, LI N, BU X H. Recent advances in luminescent metal-organic frameworks for chemical sensors[J]. Sci. China Mater., 2019, 62(11): 1655-1678

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    9. [9]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    10. [10]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

Metrics
  • PDF Downloads(1)
  • Abstract views(238)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return