Citation: Ziliang KANG, Jiamin ZHANG, Hong AN, Xiaohua LIU, Yang CHEN, Jinping LI, Libo LI. Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282 shu

Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles

  • Corresponding author: Yang CHEN, chenyangtyut@163.com
  • Received Date: 25 July 2024
    Revised Date: 9 October 2024

Figures(10)

  • The combination of hygroscopic salt with metal-organic framework (MOF) material and in-situ modified moulding method can be used to rapidly prepare hygroscopic salt-loaded CaCl2@MOF-808 composite moulded particles. Based on the high porosity and high specific surface area of MOF-808, CaCl2 could be dispersed in the pore channels of MOF-808, and water molecules were adsorbed under the joint action of the rich pore environment and the hygroscopic salt, which enhances the water harvesting ability of the molded particles under low pressure. Characterization techniques such as X-ray powder diffraction, scanning electron microscopy, N2 adsorption-desorption, and water adsorption tests were used to observe the physical phase and properties of the formed particles. The test results showed that the mechanical strength of CaCl2@MOF-808 molded adsorbent reached 25 N, which meets the compressive level of the application. At a temperature of 25 ℃ and a relative humidity (RH) of 30%, the maximum value of its water adsorption rate was 0.43 g·g-1, which was five times higher than that of the original MOF-808.
  • 加载中
    1. [1]

      Ba W X, Wang D J, Gong B H, Dai Y H, Yang Z P, Liu Z F. Urban water scarcity in China: A systematic review of research advances and future directions[J]. Appl. Geogr., 2023,159103069. doi: 10.1016/j.apgeog.2023.103069

    2. [2]

      Liu H J, Wang D S, Yuan B L. Sustainable water environment and water use: A perspective on water resource utilization[J]. J. Environ. Sci., 2016,50(1/2):1-2.

    3. [3]

      QIAO Y X. Sustainable utilization and management of water resources[J]. Geological Research and Environmental Protection, 2024,3(3):64-66.

    4. [4]

      Maiolo M, Mendicino G, Pantusa D, Senatore A. Optimization of drinking water distribution systems in relation to the effects of climate change[J]. Water, 2017,9(10)803. doi: 10.3390/w9100803

    5. [5]

      Ciampittiello M, Marchetto A, Boggero A. Water resources management under climate change: A review[J]. Sustainability, 2024,16(9)3590. doi: 10.3390/su16093590

    6. [6]

      Sathyamurthy R, El-Agouz S A, Nagarajan P K, Subramani J, Arunkumar T, Mageshbabu D, Madhu B, Bharathwaaj , R , Prakash N. A Review of integrating solar collectors to solar still[J]. Renew. Sustain. Energy Rev., 2017,77:1069-1097. doi: 10.1016/j.rser.2016.11.223

    7. [7]

      Marques A C, Veras C E, Rodriguez D A. Assessment of water policies contributions for sustainable water resources management under climate change scenarios[J]. J. Hydrol., 2022,608127690. doi: 10.1016/j.jhydrol.2022.127690

    8. [8]

      Kim H, Rao S R, Kapustin E A, Lin Z, Yang S, Yaghi O M, Wang E N. Adsorption‐based atmospheric water harvesting device for arid climates[J]. Nat. Commun., 2018,9(1)1191. doi: 10.1038/s41467-018-03162-7

    9. [9]

      Zhu R, Yu Q F, Li M, Li A M, Zhan D Y, Li Y N, Mo Z F, Sun S N, Zhang Y. Green synthesis of natural nanocomposite with synergistically tunable sorption/desorption for solar‐driven all‐weather moisture harvesting[J]. Nano Energy, 2024,124109471. doi: 10.1016/j.nanoen.2024.109471

    10. [10]

      Ahrestani Z, Sadeghzadeh S, Emrooz H B M. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply[J]. RSC Adv., 2023,13(15):10273-10307. doi: 10.1039/D2RA07733G

    11. [11]

      Gayoso N, Moylan E, Noha W, Wang J, Mulchandani A. Techno-economic analysis of atmospheric water harvesting across climate[J]. ACS ES&T Eng., 2024,4(7):1769-1780.

    12. [12]

      Chen Z H, Shi J W, Li Y Q, Ma B C, Yan X L, Liu M C, Jin H, Li D, Jing D W, Guo L J. Recent progress of energy harvesting and conversion coupled with atmospheric water gathering[J]. Energy Conv. Manag., 2021,246114668. doi: 10.1016/j.enconman.2021.114668

    13. [13]

      Feng Y H, Ge T S, Chen B, Zhan G W, Wang R Z. A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area[J]. Cell Rep. Phys. Sci., 2021,2(9)100561. doi: 10.1016/j.xcrp.2021.100561

    14. [14]

      Tu R, Hwang Y H. Reviews of atmospheric water harvesting technologies[J]. Energy, 2020,201117630. doi: 10.1016/j.energy.2020.117630

    15. [15]

      Lei C X, Guan W X, Zhao Y X, Yu G H. Chemistries and materials for atmospheric water harvesting[J]. Chem. Soc. Rev., 2024,53(14):7328-7362. doi: 10.1039/D4CS00423J

    16. [16]

      Domen J K, Stringfellow W T, Camarillo M K, Gulati S. Fog water as an alternative and sustainable water resource[J]. Clean Technol. Environ. Policy, 2013,16(2):235-249.

    17. [17]

      Fu Y, Wu L S, Ai S L, Guo Z G, Liu W M. Bionic collection system for fog-dew harvesting inspired from desert beetle[J]. Nano Today, 2023,52101979. doi: 10.1016/j.nantod.2023.101979

    18. [18]

      Yang K J, Pan T T, Lei Q, Dong X L, Cheng Q P, Han Y. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization[J]. Environ. Sci. Technol., 2021,55(10):6542-6560. doi: 10.1021/acs.est.1c00257

    19. [19]

      Aleem M, Sultan M, Farooq M, Riaz F, Yakout S M, Ahamed M S, Asfahan H M, Sajjad U, Imran M, Shahzad M W. Evaluating the emerging adsorbents for water production potential and thermodynamic limits of adsorption‐based atmospheric water harvesting systems[J]. Int. Commun. Heat Mass Transfer., 2023,145106863. doi: 10.1016/j.icheatmasstransfer.2023.106863

    20. [20]

      Liu Q W, Qin C Y, Solomin E, Chen Q, Wu W J, Zhu Q Z, Mahian O. Research progress on the development of new nano materials for solar‐driven sorption‐based atmospheric water harvesting and corresponding system applications[J]. Nano Energy, 2023,115108660. doi: 10.1016/j.nanoen.2023.108660

    21. [21]

      Gado M G, Nasser M, Hassan A A, Hassan H. Adsorption-based atmospheric water harvesting powered by solar energy: Comprehensive review on desiccant materials and systems[J]. Chem. Eng. Res. Des., 2022,160:166-183.

    22. [22]

      Hanikel N, Prévot M S, Yaghi O M. MOF water harvesters[J]. Nat. Nanotechnol., 2020,15(5):348-355. doi: 10.1038/s41565-020-0673-x

    23. [23]

      Li L F, Shi Z N, Liang H, Liu J, Qiao Z W. Machine learning‐assisted computational screening of metal‐organic frameworks for atmospheric water harvesting[J]. Nanomaterials, 2022,12(1)159. doi: 10.3390/nano12010159

    24. [24]

      Luo F, Liang X H, Chen W C, Wang S F, Gao X N, Zhang Z G, Fang Y T. Bimetallic MOFderived solar‐triggered monolithic adsorbent for enhanced atmospheric water harvesting[J]. Small, 2023,19(48)2304477. doi: 10.1002/smll.202304477

    25. [25]

      Hu Y, Ye Z Z, Peng X S. Metal‐organic frameworks for solar‐driven atmosphere water harvesting[J]. Chem. Eng. J., 2023,452139656. doi: 10.1016/j.cej.2022.139656

    26. [26]

      Hu Y, Fang Z, Wan X Y, Ma X, Wang Y Q, Dong M Y, Ye Z Z, Peng X S. Ferrocene dicarboxylic acid ligand‐exchanged hollow MIL‐101 (Cr) nanospheres for solar‐driven atmospheric water harvesting[J]. ACS Sustain. Chem. Eng., 2022,10(19):6446-6455. doi: 10.1021/acssuschemeng.2c01467

    27. [27]

      Seo Y K, Yoon J W, Lee J S, Hwang Y K, Jun C H, Chang J S, Wuttke S, Bazin P, Vimont A, Daturi M, Bourrelly S, Llewellyn P L, Horcajada P, Serre C, Férey G. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents[J]. Adv. Mater., 2011,24(6):806-810.

    28. [28]

      Shah S S A, Sohail M, Murtza G, Waseem A, Rehman A U, Hussain I, Bashir M S, Alarfaji S S, Hassan A M, Nazir M A, Javed M S, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point[J]. Chemosphere, 2024,349140729. doi: 10.1016/j.chemosphere.2023.140729

    29. [29]

      Zhu X W, Zhou X P, Li D. Exceptionally water stable heterometallic gyroidal MOFs: Tuning the porosity and hydrophobicity by doping metal ions[J]. Chem. Commun., 2016,52(39):6513-6516. doi: 10.1039/C6CC02116F

    30. [30]

      Xu J X, Li T X, Chao J X, Wu S, Yan T S, Li W C, Cao B Y, Wang R. Efficient solar‐driven water harvesting from arid air with metalorganic frameworks modified by hygroscopic salt[J]. Angew. Chem. Int. Ed., 2020,59(13):5202-5210. doi: 10.1002/anie.201915170

    31. [31]

      ZHAO S, FU M, DONG Y C. Structural regulation of ultra-stable metal‐organic frameworks and their enhanced performance in water capture[J]. Journal of Functional Materials, 2022,53(9):9008-9012.

    32. [32]

      Li B, Lu F F, Gu X W, Shao K, Wu E Y, Qian G D. Immobilization of Lewis basic nitrogen sites into a chemically stable metal‐organic framework for benchmark water-sorption-driven heat allocations[J]. Adv. Sci., 2022,9(11)2105556. doi: 10.1002/advs.202105556

    33. [33]

      Alkhatib N, Naleem N, Kirmizialtin S. How does MOF‐303 achieve high water uptake and facile release capacity?[J]. J. Phys. Chem. C, 2024,128(20):8384-8394. doi: 10.1021/acs.jpcc.4c00238

    34. [34]

      Ding M, Cai X C, Jiang H L. Improving MOF stability: Approaches and applications[J]. Chem. Sci., 2019,10(44):10209-10230. doi: 10.1039/C9SC03916C

    35. [35]

      Sun Y, Spieß A, Jansen C, Nuhnen A, Gökpinar S, Wiedey R, Ernst S J, Janiak C. Tunable LiCl@UiO‐66 composites for water sorptionbased heat transformation applications[J]. J. Mater. Chem. A, 2020,8(26):13364-13375. doi: 10.1039/D0TA03442H

    36. [36]

      An H, Chen Y, Wang Y, Liu X H, Ren Y H, Kang Z L, Li J P, Li L B. Highperformance solardriven water harvesting from air with a cheap and scalable hygroscopic salt modified metalorganic framework[J]. Chem. Eng. J., 2023,461141955. doi: 10.1016/j.cej.2023.141955

    37. [37]

      XIAO G P, PENG J, ZHANG Q H, YU J G. LiMn2O4 ion sieve moulding and lithium adsorption properties[J]. Chinese J. Inorg. Chem., 2010,26(3):435-439.  

    38. [38]

      ZHU Z X, ZHENG Y J, WANG D, CAO H, XUE J. In situ synthesis and photocatalytic properties of porous SiC nanosheets[J]. Chinese J. Inorg. Chem., 2022,38(3):441-448.  

    39. [39]

      LI Y, ZHU K, LIU H Q, WANG X M, HU Z H, HUAN D J. In‐situ polymerization of thermoplastic composites and its forming process research[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023,55(1):1-11.

    40. [40]

      CAI L F, ZHANG Y Z, XI M Z, SHI L K. Application and progress of in situ synthesis method in material preparation[J]. Heat Treatment of Metals, 2005,30(10):1-6.

    41. [41]

      Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac‐Vogt T N, Serre C. Monodispersed MOF‐808 nanocrystals synthesized via a scalable room‐temperature approach for efficient heterogeneous peptide bond hydrolysis[J]. Chem. Mater., 2021,33(17):7057-7066.

    42. [42]

      LIU X H, CHEN Y, LI J L, LU C Y, WANG Y, LI L B, LI J P. Fabrication and CO2/N2 separation performance of porous material M-MOF‐74 (M=Mg, Co, Ni)[J]. Journal of Taiyuan University of Technology, 2022,53(3):474-481.

  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    17. [17]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    18. [18]

      Ruixin LiuFeng ShiYanping XiaHaibing ZhuJiawen CaoKai PengChuanli RenJuan LiZhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

Metrics
  • PDF Downloads(9)
  • Abstract views(466)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return