Citation: Yuan GAO, Yiming LIU, Chunhui WANG, Zhe HAN, Chaoyue FAN, Jie QIU. A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271 shu

A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals

  • Corresponding author: Jie QIU, qiujie1228@xjtu.edu.cn
  • Received Date: 17 July 2024
    Revised Date: 19 December 2024

Figures(7)

  • To explore the effects of ligands on the structure, properties, and applications of cerium oxo clusters, we synthesized the first cerium oxo cluster using furoate (FA) as ligands. The crystal NH4[Ce6O4(OH)4(FA)12(NO3)(H2O)]·5CH3CN·12H2O (1) of this cluster were thoroughly characterized using techniques such as single-crystal X-ray diffraction, powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetry, and spectroscopy. Single-crystal X-ray diffraction analysis revealed that compound 1 exhibits a hexanuclear cluster structure with a [Ce6O4(OH)4]12+ core. As confirmed by the Raman spectrum, the Ce—O—Ce bond in this core suggests its formation via the hydrolysis reaction of Ce(Ⅳ) ions. This core is further stabilized by one water, one nitrate, and twelve FA groups to form the entire cluster structure. These results reveal that the hydrolysis and condensation reactions of Ce(Ⅳ) ions and their complex reaction with FA result in the formation of the cluster. The Fenton reaction was used to generate hydroxyl radicals, and methyl violet was utilized as an indicator to explore the free radical scavenging ability of compound 1. The UV-visible spectra indicated that the solution of compound 1 effectively scavenges hydroxyl radicals. As the volume of the compound 1 solution gradually increased from 50 to 2 000 μL, the scavenging efficiency rose from 8.32% to 91.06%.
  • 加载中
    1. [1]

      CHAUVEL C. Encyclopedia of geochemistry: A comprehensive reference source on the chemistry of the earth[M]. Cham: Springer International Publishing, 2018: 226-229

    2. [2]

      TANG C J, ZHANG H L, DONG L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Catal. Sci. Technol., 2016, 6(5): 1248-1264  doi: 10.1039/C5CY01487E

    3. [3]

      BREITWIESER M, KLOSE C, HARTMANN A, BÜCHLER A, KLINGELE M, VIERRATH S, ZENGERLE R, THIELE S. Cerium oxide decorated polymer nanofibers as effective membrane reinforcement for durable, high-performance fuel cells[J]. Adv. Energy Mater., 2017, 7(6): 1602100  doi: 10.1002/aenm.201602100

    4. [4]

      NYOKA M, CHOONARA Y E, KUMAR P, KONDIAH P P D, PILLAY V. Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications[J]. Nanomaterials, 2020, 10(2): 242-262  doi: 10.3390/nano10020242

    5. [5]

      MITCHELL K J, ABBOUD K A, CHRISTOU G. Atomically-precise colloidal nanoparticles of cerium dioxide[J]. Nat. Commun., 2017, 8(1): 1445  doi: 10.1038/s41467-017-01672-4

    6. [6]

      MALAESTEAN I L, ELLERN A, BACA S, KÖGERLER P. Cerium oxide nanoclusters: Commensurate with concepts of polyoxometalate chemistry?[J]. Chem. Commun., 2012, 48(10): 1499-1501  doi: 10.1039/C1CC14725K

    7. [7]

      RUSSELL-WEBSTER B, LOPEZ-NIETO J, ABBOUD K A, CHRISTOU G. Truly monodisperse molecular nanoparticles of cerium dioxide of 2.4 nm dimensions: A {Ce100O167} cluster[J]. Angew. Chem. ‒Int. Edit., 2021, 60(22): 12591-12596  doi: 10.1002/anie.202103110

    8. [8]

      ESTES S L, ANTONIO M R, SODERHOLM L. Tetravalent Ce in the nitrate-decorated hexanuclear cluster [Ce6(μ3-O)4(μ3-OH)4]12+: A structural end point for ceria nanoparticles[J]. J. Phys. Chem. C, 2016, 120(10): 5810-5818  doi: 10.1021/acs.jpcc.6b00644

    9. [9]

      BLANES-DÍAZ A, SHOHEL M, RICE N T, PIEDMONTE I, MCDONALD M A, JORABCHI K, KOZIMOR S A, BERTKE J A, NYMAN M, KNOPE K E. Synthesis and characterization of cerium-oxo clusters capped by acetylacetonate[J]. Inorg. Chem., 2024, 63(21): 9406-9417  doi: 10.1021/acs.inorgchem.3c02141

    10. [10]

      KAWAKAMI T, TAMAKI S, SHIRASE S, TSURUGI H, MASHIMA K. Syntheses and redox properties of carboxylate-ligated hexanuclear Ce(Ⅳ) clusters and their photoinduced homolysis of the Ce(Ⅳ)-ligand covalent bond[J]. Inorg. Chem., 2022, 61(50): 20461-20471  doi: 10.1021/acs.inorgchem.2c03163

    11. [11]

      WASSON M C, ZHANG X, OTAKE K I, ROSEN A S, ALAYOGLU S, KRZYANIAK M D, CHEN Z, REDFERN L R, ROBISON L, SON F A, CHEN Y, ISLAMOGLU T, NOTESTEIN J M, SNURR R Q, WASIELEWSKI M R, FARHA O K. Supramolecular porous assemblies of atomically precise catalytically active cerium-based clusters[J]. Chem. Mater., 2020, 32(19): 8522-8529  doi: 10.1021/acs.chemmater.0c02740

    12. [12]

      GREBENYUK D, MARTYNOVA I, TSYMBARENKO D. Self-assembly of hexanuclear lanthanide carboxylate clusters of three architectures[J]. Eur. J. Inorg. Chem., 2019(26): 3103-3111

    13. [13]

      TSURUGI H, MASHIMA K. Renaissance of homogeneous cerium catalysts with unique Ce(Ⅳ/Ⅲ) couple: Redox-mediated organic transformations involving homolysis of Ce(Ⅳ)-ligand covalent bonds[J]. J. Am. Chem. Soc., 2021, 143(21): 7879-7890  doi: 10.1021/jacs.1c02889

    14. [14]

      WACKER J N, DITTER A S, CARY S K, MURRAY A V, BERTKE J A, SEIDLER G T, KOZIMOR S A, KNOPE K E. Reactivity of a chloride decorated, mixed valent CeⅢ/Ⅳ38-oxo cluster[J]. Inorg. Chem., 2022, 61(1): 193-205  doi: 10.1021/acs.inorgchem.1c02705

    15. [15]

      YUAN F, GU Z, LI L, SHA L. Novel cerium(Ⅳ)-diolate complex with a 13-nuclear cerium(Ⅳ)-oxo core: Synthesis, molecular structure and catalytic property for ε-caprolactone-polymerization[J]. Polyhedron, 2017, 133: 393-397  doi: 10.1016/j.poly.2017.06.001

    16. [16]

      MEREACRE V, AKO A M, AKHTAR M N, LINDEMANN A, ANSON C E, POWELL A K. Homo- and heterovalent polynuclear cerium and cerium/manganese aggregates[J]. Helv. Chim. Acta, 2009, 92(11): 2507-2524  doi: 10.1002/hlca.200900192

    17. [17]

      DAS R, SARMA R, BARUAH J B. A hexanuclear cerium(Ⅳ) cluster with mixed coordination environment[J]. Inorg. Chem. Commun., 2010, 13(6): 793-795  doi: 10.1016/j.inoche.2010.03.050

    18. [18]

      DOVRAT G, PEVZNER S, MAIMON E, VAINER R, ILIASHEVSKY O, BEN-ELIYAHU Y, MOISY P, BETTELHEIM A, ZILBERMANN I. DOTP versus DOTA as ligands for lanthanide cations: Novel structurally characterized Ce and Ce cyclen-based complexes and clusters in aqueous solutions[J]. Chem. Eur. J., 2022, 28(61): e202201868  doi: 10.1002/chem.202201868

    19. [19]

      MATHEY L, PAUL M, COPÉRET C, TSURUGI H, MASHIMA K. Cerium(Ⅳ) hexanuclear clusters from cerium(Ⅲ) precursors: Molecular models for oxidative growth of ceria nanoparticles[J]. Chem. Eur. J., 2015, 21(38): 13454-13461  doi: 10.1002/chem.201501731

    20. [20]

      SHIRASE S, TAMAKI S, SHINOHARA K, HIROSAWA K, TSURUGI H, SATOH T, MASHIMA K. Cerium(Ⅳ) carboxylate photocatalyst for catalytic radical formation from carboxylic acids: Decarboxylative oxygenation of aliphatic carboxylic acids and lactonization of aromatic carboxylic acids[J]. J. Am. Chem. Soc., 2020, 142(12): 5668-5675  doi: 10.1021/jacs.9b12918

    21. [21]

      LV X, ZHAO X L, ZHAO Q, ZHENG Q, XUAN W. Cerium-oxo clusters for photocatalytic aerobic oxygenation of sulfides to sulfoxides[J]. Dalton Trans., 2022, 51(23): 8949-8954  doi: 10.1039/D2DT00856D

    22. [22]

      AMES B N, SHIGENAGA M K, HAGEN T M. Oxidants, antioxidants, and the degenerative diseases of aging[J]. Proc. Natl. Acad. Sci. U. S. A., 1993, 90(17): 7915-7922  doi: 10.1073/pnas.90.17.7915

    23. [23]

      BATTINO M, BULLON P, WILSON M, NEWMAN H. Oxidative injury and inflammatory periodontal diseases: The challenge of anti-oxidants to free radicals and reactive oxygen species[J]. Crit. Rev. Oral Biol. Med., 1999, 10(4): 458-476  doi: 10.1177/10454411990100040301

    24. [24]

      BAUER V, BAUER F. Reactive oxygen species as mediators of tissue protection and injury[J]. Gen. Physiol. Biophys., 1999, 18: 7-14

    25. [25]

      JIA S P, LIANG M M, GUO L H. Photoelectrochemical detection of oxidative DNA damage induced by Fenton reaction with low concentration and DNA-associated Fe2+[J]. J. Phys. Chem. B, 2008, 112(14): 4461-4464  doi: 10.1021/jp711528z

    26. [26]

      MITCHELL K J, GOODSELL J L, RUSSELL-WEBSTER B, TWAHIR U T, ANGERHOFER A, ABBOUD K A, CHRISTOU G. Expansion of the family of molecular nanoparticles of cerium dioxide and their catalytic scavenging of hydroxyl radicals[J]. Inorg. Chem., 2021, 60(3): 1641-1653  doi: 10.1021/acs.inorgchem.0c03133

    27. [27]

      RUSSELL-WEBSTER B, LOPEZ-NIETO J, ABBOUD K A, CHRISTOU G. Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO2[J]. Dalton Trans., 2021, 50(43): 15524-15532  doi: 10.1039/D1DT02667D

    28. [28]

      FEDOSEEV A M, SOKOLOVA M N, GRIGOR′EV M S, BUDANTSEVA N A. New compounds of some trivalent lanthanides and actinides with furancarboxylic acid. Synthesis, structure, and absorption spectra of the complexes [(NH2)3C]2[M(OOCC4H3O)5] (M=La, Ce, Pr, Nd, Tb, Np, Pu, Am)[J]. Radiochemistry, 2018, 60(6): 573-580  doi: 10.1134/S1066362218060024

    29. [29]

      TURTA C, MELNIC S, BETTINELLI M, SHOVA S, BENELLI C, SPEGHINI A, CANESCHI A, GDANIEC M, SIMONOV Y, PRODIUS D, MEREACRE V. Synthesis, crystal structure, magnetic and luminescence investigations of new 2Ln3+-Sr2+ heteronuclear polymers with 2-furoic acid[J]. Inorg. Chim. Acta, 2007, 360(9): 3047-3054  doi: 10.1016/j.ica.2007.02.045

    30. [30]

      KLIMEK B, KOZIOL A E, STEPNIAK K. Crystal data of hydrates of yttrium(Ⅲ) and lanthanide(Ⅲ) complexes with 2-furancarboxylic acid, Ln(C5H3O3)3·nH2O (n=2 or 3)[J]. Z. Kristallogr. ‒Cryst. Mater., 1986, 174(1/2/3/4): 305-308

    31. [31]

      KOZIOL A E, BRZYSKA W, KLIMEK B, KRÓL A, STEPNIAK K. The crystal and molecular structure of praseodymium(Ⅲ) 2-furancarboxylate dihydrate[J]. J. Coord. Chem., 1987, 15(4): 367-372  doi: 10.1080/00958978708079793

    32. [32]

      VANAGAS N A, HIGGINS R F, WACKER J N, ASUIGUI D R C, WARZECHA E, KOZIMOR S A, STOLL S L, SCHELTER E J, BERTKE J A, KNOPE K E. Mononuclear to polynuclear U structural units: Effects of reaction conditions on U-furoate phase formation[J]. Chemistry, 2020, 26(26): 5872-5886  doi: 10.1002/chem.201905759

    33. [33]

      SHELDRICK G M. SHELXT—Integrated space-group and crystal-structure determination[J]. Acta Crystallogr. Sect. A, 2015, 71: 3-8  doi: 10.1107/S2053273314026370

    34. [34]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C‒Struct. Chem., 2015, 71: 3-8  doi: 10.1107/S2053229614024218

    35. [35]

      KASTEN L S, GRANT J T, GREBASCH N, VOEVODIN N, ARNOLD F E, DONLEY M S. An XPS study of cerium dopants in sol-gel coatings for aluminum 2024-T3[J]. Surf. Coat. Technol., 2001, 140(1): 11-15  doi: 10.1016/S0257-8972(01)01004-0

    36. [36]

      BÊCHE E, CHARVIN P, PERARNAU D, ABANADES S, FLAMANT G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surf. Interface Anal., 2008, 40(3/4): 264-267

    37. [37]

      MAGDALINE J D, CHITHAMBARATHANU T. Natural bond orbital analysis and vibrational spectroscopic studies of 2-furoic acid using density functional theory[J]. Indian J. Pure Appl. Phys., 2012, 50(1): 7-13

    38. [38]

      GHALLA H, ISSAOUI N, CASTILLO M V, BRANDÁN S A, FLAKUS H T. A complete assignment of the vibrational spectra of 2-furoic acid based on the structures of the more stable monomer and dimer[J]. Spectrochim. Acta Part A, 2014, 121: 623-631  doi: 10.1016/j.saa.2013.11.001

    39. [39]

      MILLER J T, IRISH D E. Infrared and Raman spectra of the cerium(Ⅳ) ion-nitrate ion-water system[J]. Can. J. Chem., 1967, 45(2): 147-155  doi: 10.1139/v67-030

    40. [40]

      WEBER W H, HASS K C, MCBRIDE J R. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects[J]. Phys. Rev. B: Condens. Matter, 1993, 48(1): 178-185  doi: 10.1103/PhysRevB.48.178

    41. [41]

      RUNOWSKI M, STOPIKOWSKA N, LIS S. UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides[J]. Dalton Trans., 2020, 49(7): 2129-2137  doi: 10.1039/C9DT04921E

    42. [42]

      CHIRILĂ E, CARAZEANU I, DOBRINAŞ S. Spectrometric studies about some dyes—Anionic surfactant interactions in aqueous solutions[J]. Talanta, 2000, 53(1): 271-275  doi: 10.1016/S0039-9140(00)00463-X

    43. [43]

      XUE Y, LUAN Q F, YANG D, YAO X, ZHOU K B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles[J]. J. Phys. Chem. C, 2011, 115(11): 4433-4438  doi: 10.1021/jp109819u

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    15. [15]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    16. [16]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(2)
  • Abstract views(203)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return