Citation: Xiangyu CAO, Jiaying ZHANG, Yun FENG, Linkun SHEN, Xiuling ZHANG, Juanzhi YAN. Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270 shu

Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material

  • Corresponding author: Juanzhi YAN, yanjuanzhi@tyu.edu.cn
  • Received Date: 16 July 2024
    Revised Date: 14 January 2025

Figures(11)

  • A bimetallic (Co, Fe) and nitrogen-doped porous carbon/sulfur composite material (e-CF@NPC/S, CF represents CoFe alloy, NPC represents nitrogen-doped porous carbon) was prepared by hydro-thermal reaction, carbonization, acid etching, and S loading. Then a series of composite materials with different nuclear shell ratios were obtained by changing the ratio of raw materials. The structural analysis and electrochemical properties test results of these composite materials show that core-shell structure porous carbon composite had a rich surface area and space to serve active substance loading and volume changes. The spatial domain restriction of the shell can be helpful to anchor sulfur and polysulfide (LiPSs) inside the structure, however, the shell can also block ion diffusion. The catalytic and absorptive capability of Co-Fe alloy depends on the quantities of active sites. Cathodes of e-CF@NPC-3/S show the best electrochemistry performance with a capacity retention rate of 92.35% at 0.2C after 100 cycles (initial capacity was 996.9 mAh·g-1). After 300 cycles at 1C, it can achieve a capacity decay rate of 0.049% per cycle (initial capacity was 684.5 mAh·g-1).
  • 加载中
    1. [1]

      ZHANG D, LUO Y X, LIU J X, DONG Y, XIANG C, ZHAO C K, SHU H B, HOU J H, WANG X Y, CHEN M F. ZnFe2O4-Ni5P4 Mott-Schottky heterojunctions to promote kinetics for advanced Li-S batteries[J]. ACS Appl. Mater. Inter., 2022, 14: 23546-23557  doi: 10.1021/acsami.2c04734

    2. [2]

      PARSAEE F, FAYZULLAEV N, NASSAR F M, ALREDA B A, MAHMOUD H M A, TAKI A G, FARAJI M. Co-Fe dual-atom isolated in N-doped graphydine as an efficient sulfur conversion catalyst in Li-S batteries[J]. J. Alloy. Compd., 2024: 988174136

    3. [3]

      CAO G Q, DUAN R X, Li X F. Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies[J]. EnergyChem, 2023, 5: 100096  doi: 10.1016/j.enchem.2022.100096

    4. [4]

      PEILONG Z, YAO D, LIANG H, XIA Y F, ZENG Y P. Core-shell titanium nitride/silicon nitride modified separators as polysulfide shuttling barriers for lithium-sulfur batteries via a facile and recyclable molten-salt route[J]. Ceram. Int., 2023, 49: 1381-1389  doi: 10.1016/j.ceramint.2022.09.119

    5. [5]

      LIN T Y, QIAO R, LUO Y H, ZHANG Z S, YANG Y Q, LI J D. Covalent organic framework-based core-shell sulfur cathode design for enhanced polysulfide immobilization and redox kinetics in lithium-sulfur batteries[J]. J. Alloy. Compd., 2023, 936: 168184  doi: 10.1016/j.jallcom.2022.168184

    6. [6]

      KWOK C Y, XU S Q, KOCHETKOV I, ZHOU L D, NAZAR L F. High-performance all-solid-state Li2S batteries using an interfacial redox mediator[J]. Energy Environ. Sci., 2023, 16: 610-618  doi: 10.1039/D2EE03297J

    7. [7]

      ZHANG L N, LI T S, ZHANG X C, MA Z Y, ZHOU Q P, LIU Y, JING X Y, ZHANG H Y, NI L B, DIAO G W. Core-shell polyoxometalate-based zeolite imidazole framework-derived multi-interfacial MoSe2/CoSe2@NC enabling multi-functional polysulfide anchoring and conversion in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2023, 11: 3105-3117  doi: 10.1039/D2TA08292F

    8. [8]

      ZHAO H P, TIAN J, JIU H F, XU Q W, WANG C L, CHE S C, GUO Z X, ZHANG L X. Double-shell carbon-coated CoFe alloy nanoparticles derived from dopamine-coated Prussian blue analogues for high-efficiency lithium-sulfur batteries[J]. Int. J. Electrochem. Sci., 2022, 17(11): 22118  doi: 10.20964/2022.11.20

    9. [9]

      GUO J, JIANG H L, WANG K D, YU M, JIANG X B, HE G H, LI X C. Enhancing electron conductivity and electron density of single atom based core-shell nanoboxes for high redox activity in lithium sulfur batteries[J]. Small, 2023, 19(34): 2301849  doi: 10.1002/smll.202301849

    10. [10]

      SUN C H, LIN Y Y, LI W L, FAN Y, LIU H, SUN Y H, NAN J M. In situ growth of core-shell structure of tremella fuciformis shaped SnS@sulfur doped carbon composite as anode materials for high performance lithium-ion batteries[J]. J. Alloy. Compd., 2023, 935: 168087  doi: 10.1016/j.jallcom.2022.168087

    11. [11]

      KIM J H, PARK D Y, PARK J S, SHIN M, KIM J W, YANG S M, PARK C R, YANG S J. Multilayer design of core-shell nanostructure to protect and accelerate sulfur conversion reaction[J]. Energy Storage Mater., 2023, 60: 110905

    12. [12]

      LIU B, WANG J, LI Z P, SUN Z H, LI C Q, SEO J M, LI J B, GUO Y Z, YAO H Y, GUAN S, BAEK J B. Multiwall carbon nanotube-hyperbranched polymaleimide core-shell nanowires with hierarchical porous and polar structure as sulfur host for sustainable lithium-sulfur batteries[J]. Nano Energy, 2024, 126: 109611  doi: 10.1016/j.nanoen.2024.109611

    13. [13]

      YANG P, YUAN Y F, ZHANG D, YANG Q H, GUO S Y, CHENG J P. Nanocapsule of MnS nanopolyhedron Core@CoS nanoparticle/carbon shell@pure carbon shell as anode material for high-performance lithium storage[J]. Molecules, 2023, 898(28): 28020898

    14. [14]

      WANG J N, WANG H L, JIA S Y, ZHAO Q, ZHENG Q, MA Y L. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries[J]. J. Energy Storage, 2023, 72: 108372  doi: 10.1016/j.est.2023.108372

    15. [15]

      CHEN Y P, YAO Y, ZHAO W T, WANG L F, LI H T, ZHANG J W, WANG B J, JIA Y, ZHANG R G, YU Y, LIU J. Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries[J]. Nat. Commun., 2023, 14: 7487  doi: 10.1038/s41467-023-42941-9

    16. [16]

      HUANG X L, ZENG P, LU Y F, YANG J, CHEN M F, LIU H, WANG X Y. Revealing the role of crystal structure to catalysis: Inverse spinel phase Co-Mn-based catalyst for Li-S batteries[J]. Chem. Eng. J., 2024, 487: 150490  doi: 10.1016/j.cej.2024.150490

    17. [17]

      REN X, WANG Q, PU Y, SUN Q, SUN W B, LU L H. Synergizing spatial confinement and dual-metal catalysis to boost sulfur kinetics in lithium-sulfur batteries[J]. Adv. Mater., 2023, 35: 2304120  doi: 10.1002/adma.202304120

    18. [18]

      YIN S Q, QU J C, KANNAN P, LU L, ZHOU F, LINKOV V, BAI T W, CAO H, WANG P, JI S. Indium/cobalt nanoparticles impregnated porous nitrogen-doped carbon matrix as a 3D sulfur host for lithium polysulfide adsorption-desorption and catalytic conversion in lithium-sulfur batteries[J]. Compos. Pt. B‒Eng., 2023, 264: 110905  doi: 10.1016/j.compositesb.2023.110905

    19. [19]

      WU Q D, GUO T, WU Z H, SHI K S, YANG X K, SHE Z Q, ZHAO R Y, RUAN Y J. Boosting polysulfide transformation by NiCo2S4 hollow dodecahedra@nitrogen-doped carbon core/shell nanostructures as cathodes for lithium-sulfur batteries[J]. ACS Appl. Nano Mater., 2023, 6(9): 7456-7464  doi: 10.1021/acsanm.3c00596

    20. [20]

      WANG Y J, CHEN H Y, HOU J Y, YANG W H, HUANG R W, NI Z C, ZHU Z Y, WANG Y, WEI K Y, ZHANG Y Y, LI X. CoNi-based bimetal-organic framework-derived carbon composites multifunctional modified lithium-sulfur battery separators[J]. Journal of Electrochemistry, 2023, 29(3): 44-58

    21. [21]

      SHEN Z Y, GAO Q M, ZHU X B, GUO Z J, GUO K Y, SONG X S, ZHAO Y. In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries[J]. Energy Storage Mater., 2023, 57: 299-307  doi: 10.1016/j.ensm.2023.02.023

    22. [22]

      ZHANG C, YU M, WANG P, ZHU K X, WANG W J. Synergistic effect in the ZIF67-derived core shell structure towards the improved electrochemical performances in lithium-sulfur batteries[J]. J. Energy Storage, 2023, 74: 109493  doi: 10.1016/j.est.2023.109493

    23. [23]

      JIN S Y, XU H Y, XIE Y H, LUO Y P, LI J, XU H, JIN H, CAI W W. Synergistic effect of selectively etched CoFe and N-doped hollow carbon spheres for high performance lithium-sulfur batteries[J]. Appl. Surf. Sci., 2023, 630: 157459  doi: 10.1016/j.apsusc.2023.157459

    24. [24]

      WER H L, GONG Y L, CAO C M, CHEN Z X, ZHOU Z Y, LV H F, ZHAO Y, BAO M Y, YU K, GUO X W, WANG Y. The CoFeNC@NC catalyst with numerous surface cracks bidirectionally catalyzes the conversion of polysulfides to accelerate the reaction kinetics of lithium-sulfur batteries[J]. Small, 2024, 20: 2304531  doi: 10.1002/smll.202304531

    25. [25]

      WEI Z, SARWAR S, AZAM S, AHASAN M R, VOYDA M, ZHANG X Y, WANG R G. Ultrafast microwave synthesis of MoTe2@graphene composites accelerating polysulfide conversion and promoting Li2S nucleation for high-performance Li-S batteries[J]. J. Colloid Interface. Sci., 2023, 635: 391-405  doi: 10.1016/j.jcis.2022.12.111

    26. [26]

      SUN L, LIU Y X, XIE J, FAN L L, WU J, JIANG R Y, JIN Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries[J]. Chem. Eng. J., 2023, 451: 138370  doi: 10.1016/j.cej.2022.138370

    27. [27]

      XIA W L, HAN M Y, CHEN Y F, ZHOU Y, SHU H B, CHEN Y, SU J C, WANG X Y. NiFeP anchored on rGO as a multifunctional interlayer to promote the redox kinetics for Li-S batteries via regulating d-bands of Ni-based phosphides[J]. ACS Sustainable Chem. Eng., 2023, 11: 1742-1751  doi: 10.1021/acssuschemeng.2c05009

    28. [28]

      CHENG Z B, PAN H, WU Z Y, WUBBENHORST M, ZHANG Z J. Cu-Mo bimetal modulated multifunctional carbon nanofibers promoting the polysulfides conversion for high-sulfur-loading lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14: 45688-45696  doi: 10.1021/acsami.2c13012

    29. [29]

      MAO R Y, ZHANG T P, SHAO W L, LIU S Y, SONG Z H, SONG C, LI X Y, JIN X, JIANG W Y, JIAN X G, HU F Y. Intermolecular adsorption-pairing synergy for accelerated polysulfide redox reactions towards lithium-sulfur battery with high stability[J]. Energy Storage Mater., 2023, 55: 21-32  doi: 10.1016/j.ensm.2022.11.036

    30. [30]

      XU M H, WANG Y H, HE W H, LI X D, MENG X H, LI C C, LI X T, KONG Q H, SHEN L F, ZHANG D, ZHANG X, XIN S, GUO Y G. A N-rich porous carbon nanocube anchored with Co/Fe dual atoms: An efficient bifunctional catalytic host for Li-S batteries[J]. Mater. Chem. Front., 2022, 6(15): 2095-2102

    31. [31]

      ZHANG Y, QIU Y, FAN L S, SUN X, JIANG B, WANG M X, WU X, TIAN D, SONG X Q, YIN X J, SHUAI Y, ZHANG N Q. Dual-atoms iron sites boost the kinetics of reversible conversion of polysulfide for high-performance lithium-sulfur batteries[J]. Energy Storage Mater., 2023, 63: 103026  doi: 10.1016/j.ensm.2023.103026

    32. [32]

      LEI D Y, LI J K, XIANG M W, ZHAO Z R, YANG S X, HU Z, YUAN M W, GUO J M, XIA Y, BAI W. Synergistic constraint and conversion of lithium polysulfide using a 3D hollow carbon interlayer in ultrahigh sulfur content Li-S batteries[J]. Appl. Surf. Sci., 2023, 623: 157080  doi: 10.1016/j.apsusc.2023.157080

    33. [33]

      BAE J H, LEE S R, CHOI H Y, PARK J W, KIM B G, KIM D, YOON S Y, LEE Y J. 3D interconnected structure-based lithium-sulfur batteries with high energy densities[J]. Appl. Surf. Sci., 2023, 614: 156112  doi: 10.1016/j.apsusc.2022.156112

    34. [34]

      ZENG P, ZHOU X, PENG J, HUANG X L, CHANG B B, CHEN G R, CHEN M F, ZHENG L P, PEI Y, SU J C, WANG X Y. Promoting "strong adsorption" and "fast conversion" of polysulfides in Li-S batteries based on conductive sulfides host with hollow prism structure and surface defects[J]. Adv. Funct. Mater., 2023, 33(4): 202211818

    35. [35]

      HAN Z Y, GAO R H, JIA Y Y, ZHANG M T, LAO Z J, CHEN B A, ZHANG Q, LI C, LV W, ZHOU G M. Catalytic effect in Li-S batteries: From band theory to practical application[J]. Mater. Today, 2022, 57: 84-120  doi: 10.1016/j.mattod.2022.05.017

    36. [36]

      LIU G L, WANG W M, ZENG P, YUAN C, WANG L, LI H T, ZHANG H, SUN X H, DAI K H, MAO J, LI X, ZHANG L. Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries[J]. Nano Lett., 2022, 22: 6366-6374  doi: 10.1021/acs.nanolett.2c02183

    37. [37]

      ZENG P, ZHOU Z Y, LI B, YU H, ZHOU X, CHEN G R, CHANG B B, CHEN M F, SHU H B, SU J C, WANG X Y. Insight into the catalytic role of defect-enriched vanadium sulfide for regulating the adsorption-catalytic conversion behavior of polysulfides in Li-S batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14: 35833-35843  doi: 10.1021/acsami.2c09791

    38. [38]

      ZHANG X M, YANG T Z, ZHANG Y G, WANG X B, WANG J Y, LI Y B, YU A P, WANG X, CHEN Z W. Single zinc atom aggregates: Synergetic interaction to boost fast polysulfide conversion in lithium-sulfur batteries[J]. Adv. Mater., 2023, 35: 2208470  doi: 10.1002/adma.202208470

    39. [39]

      GUI Y Y, CHEN P, LIU D Y, FAN Y, ZHOU J, ZHAO J X, LIU H, GUO X, LIU W Q, CHENG Y. TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries[J]. J. Alloy. Compd., 2022, 895: 162495

    40. [40]

      LI M H, WANG H, WANG X Y, REN J W, WANG R F. Metallic FeCo clusters propelling the stepwise polysulfide conversion in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2022, 10: 21327-21335

    41. [41]

      JIN L A, HUANG B B, QIAN X Y, CHEN J Y, CHENG J, HAO Q Y, ZHANG K. Hollow bimetallic sulfide composite coated separator for hindering the shuttle of polysulfides in Li-S batteries[J]. J. Alloy. Compd., 2022, 926: 166515

    42. [42]

      CHEN Y, KANG Y H, YANG H Y, HUA H M, QIN J X, LIU P, ZHANG Y Y, ZHANG Y J, ZHAO J B. Contribution of different metal nodes on stepwise electrocatalysis in lithium-sulfur batteries[J]. Energy Storage Mater., 2023, 54: 488-497

    43. [43]

      HU X H, HUANG T, ZHANG G Y, LIN S J, CHEN R W, CHUNG L H, HE J. Metal-organic framework-based catalysts for lithium-sulfur batteries[J]. Coord. Chem. Rev., 2023, 475: 214879

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(4)
  • Abstract views(343)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return