Citation: Junqing WEN, Ruoqi WANG, Jianmin ZHANG. Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243 shu

Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au

  • Corresponding author: Junqing WEN, wenjq2013@163.com
  • Received Date: 28 June 2024
    Revised Date: 20 January 2025

Figures(14)

  • This paper aims to improve hydrogen production through photolysis water performance of GaN/ZnO heterojunction by doping Li and Au. First principles methods were used to investigate the electronic structures, optical properties, and photocatalytic performance of Li and Au doping GaN/ZnO heterojunction. The electronic structure calculation shows that the GaN/ZnO heterojunction is a direct band-gap semiconductor, and the heterojunction type is a Z-type heterojunction with a band gap of 1.41 eV, which can effectively promote carrier separation. The structures doped with Li and Au are magnetic except for the Li substitution Zn structure. The results of optical property analysis show that the doping of Li and Au can improve the absorption coefficient of the system, and the heterojunction after Li substitution Zn has a large optical absorption coefficient, a large work function (7.37 eV), and an interface potential difference (2.55 V), indicating that the visible light utilization rate is high, the interface structure is stable and has a large built-in electric field, which can more effectively promote the migration of electrons and holes and reduce the binding of electron-hole pairs. The Bader charge analysis shows that the doped elements Li and Au lose electrons. The electrons are transferred from the GaN layer to the ZnO layer, forming an effective internal electric field at the interface. More electrons are transferred between the two structural layers of Ga and Zn, which are substituted by Li and Au, indicating that the interfacial potential difference is large and has a high migration rate of photogenerated carriers. The analysis of the performance of photolysis of water to hydrogen production shows that the four systems of ZnO film, GaN/ZnO heterojunction, Li substitution Ga, and Ga and Zn with simultaneous displacement of Li meet the conditions for hydrogen production by photolysis at pH=0. The GaN film, ZnO film, and Ga and Zn systems with a simultaneous displacement of Li meet the conditions for hydrogen production by photolysis of water at pH=7.
  • 加载中
    1. [1]

      LÜ M, SU X Y, RAO P G. Research progress in novel semiconductor photocatalytic materials for hydrogen production from water photolysis[J]. Mater. Rep., 2005,19(5):1-3. doi: 10.3321/j.issn:1005-023X.2005.05.001

    2. [2]

      SRINIVASU K, MODAK B, GHOSH S K. Porous graphitic carbon nitride: A possible metal-free photocatalyst for water splitting[J]. J. Phys. Chem. C, 2014,118(46):26479-26484. doi: 10.1021/jp506538d

    3. [3]

      HE L M, CHENG H Y, LIANG G F, YU Y C, ZHAO F Y. Effect of structure of CuO/ZnO/Al 2O3 composites on catalytic performance for hydrogenation of fatty acid ester[J]. Appl. Catal. A-Gen., 2013,452:88-93. doi: 10.1016/j.apcata.2012.11.039

    4. [4]

      SHANGGUAN W F. Progress in hydrogen production from water by solar photodissociation[J]. Chinese J. Inorg. Chem., 2001,17(5):619-626. doi: 10.3321/j.issn:1001-4861.2001.05.002

    5. [5]

      WANG G Z, HUANG Y H, KUANG A L, YUAN H K, CHEN H, LI Y. Double-hole-mediated codoping on KNbO3 for visible light photo-catalysis[J]. Inorg. Chem., 2016,55(19):96620-9631.

    6. [6]

      LIAO J M, SA B S, ZHOU J, AHUJA R, SUN Z M. Design of high-effi-ciency visible-light photocatalysts for water splitting: MoS2/AIN (GaN) heterostructures[J]. J. Phys. Chem. C, 2014,118(31):17594-17599. doi: 10.1021/jp5038014

    7. [7]

      YAO Y Z, CAO D, YAN J, LIU X Y, WANG J F, JIANG Z T, SHU H B. First-principles study of the environmental stability and photovoltaic properties of bismuth oxychloride/caesium-lead-chloride van der waals heterojunction[J]. Acta Phys. Sin., 2022,71(19):318-327.

    8. [8]

      ZHANG B D. First-principle study of photolytic water catalysts[D]. Nanjing: Nanjing Normal University, 2020.

    9. [9]

      WANG R Z, ZHANG J Y, YANG M Q. Preparation of low-cost and high-crystalline GaN nanowire flexible thin films and their field emis-sion properties[J]. Journal of Beijing University of Technology, 2024,50(9):1038-1048.

    10. [10]

      BEEBY J L. Physics of amorphous materials[J]. Phys. Bull., 1985,36(4)177.

    11. [11]

      WEYHER J L, TICHELAAR F D, ZANDBERGEN H W, MACHT L, HAGEMAN P R. Selective photoetching and transmission elec-tron microscopy studies of defects in heteroepitaxial GaN[J]. J. Appl. Phys., 2001,90(12):6105-6109. doi: 10.1063/1.1416137

    12. [12]

      WEYHER J L, ALBRECHT M, WOSINSKI T, NOWAK G, STRUNK H P, POROWSKI S. Study of individual grown-in and in-dentation-induced dislocations in GaN by defect-selective etching and transmission electron microscopy[J]. Mater. Sci. Eng. B -Adv. Funct. Solid-State Mater., 2001,80(1/2/3):318-321.

    13. [13]

      NEY A, KAMMERMEIER T, OLLEFS K, YE S, NEY V, KASPAR T C, CHAMBERS S A, WILHELM F, ROGALEV A. Anisotropic paramagnetism of Co-doped ZnO epitaxial films[J]. Phys. Rev. B, 2010,81(5)054420. doi: 10.1103/PhysRevB.81.054420

    14. [14]

      RANA N, CHAND S, GATHANIA A K. Tailoring the structural and optical properties of ZnO by doping with Cd[J]. Ceram. Int., 2015,41(9):12032-12037. doi: 10.1016/j.ceramint.2015.06.017

    15. [15]

      ALESSANDRA C, ARRIGO C. Codoping and interstitial deactiva-tion in the control of amphoteric Li dopant in ZnO for the realization of p-type TCOs[J]. Materials, 2017,10:332-336. doi: 10.3390/ma10040332

    16. [16]

      YIM K, LEE J, LEE D, LEE M, CHO E, LEE H S, NAHM H H, HAN S. Property database for single-element doping in ZnO obtained by automated first-principles calculations[J]. Sci. Rep., 2017,740907. doi: 10.1038/srep40907

    17. [17]

      SAHIN H, CAHANGIROV S, TOPSAKAL M, BEKAROGLU E, AKTURK E, SENGER R T, CIRACI S. Monolayer honeycomb struc-tures of group-Ⅳ elements and Ⅲ-Ⅴ binary compounds: First-prin-ciples calculations[J]. Phys. Rev. B, 2009,80(15)155453. doi: 10.1103/PhysRevB.80.155453

    18. [18]

      BOTELLO-MÉNDEZ A R, LÓPEZ-URÍAS F, TERRONES M, TERRONES H. Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur[J]. Nano Res., 2008,1(5):420-426. doi: 10.1007/s12274-008-8042-3

    19. [19]

      ZHAO B, LUO J, TIAO Y Y. Preparation of Mn-doped ZnO materials and their thermochromic properties[J]. Ordnance Mater. Sci. Eng., 2024,47(2):51-56.

    20. [20]

      DIVYA N K, PRADYUMNAN P P. Enhancement of photocatalytic activity in Nd doped ZnO with an increase in dielectric constant[J]. J. Mater. Sci.-Mater. Electron., 2017,28(2):2147-2156. doi: 10.1007/s10854-016-5779-4

    21. [21]

      YEOH K H, YOON T L, LIM T L, RU SI, ONG D S. Monolayer GaN functionalized with alkali metal and alkaline earth metal atoms: A first-principles study[J]. Superlattices Microstruct., 2019,130:428-436. doi: 10.1016/j.spmi.2019.05.011

    22. [22]

      MOSES P G, VAN DE WALLE C G, MIAO M S. Band-gap bowing, band offsets, and electron affinities for AlN, GaN, InN and InGaN: A DFT study[C]//American Physical Society. 2009 Annual Meeting of the California Section of the APS. Monterey: American Physical Soci-ety, 2009.

    23. [23]

      WANG S K, REN C D, TIAN H Y, YU J, SUN M L. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photo-catalyst: A first-principles study[J]. Phys. Chem. Chem. Phys., 2018,20:13394-13399. doi: 10.1039/C8CP00808F

    24. [24]

      WANG M, XU J Y, SUN T M, TANG Y F, JIANG G Q, SHI Y J. Facile photochemical synthesis of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities[J]. Mater. Lett., 2018,219:236-239. doi: 10.1016/j.matlet.2018.02.113

    25. [25]

      GUO Z L, ZHUANG J, MA Z, MA Z, XIA H R, W EN, Q X, LUO X Y, WEN X. Enhanced electron extraction using ZnO/ZnO-SnO2: Sol-id double-layer photoanode thin films for efficient dye sensitized so-lar cells[J]. Thin Solid Films, 2019,684:1-8. doi: 10.1016/j.tsf.2019.05.034

    26. [26]

      LI C L, CHEN S R, WANG Y F, HOU Z Y. ZnO/ZnS heterostruc-tures grown on Zn foil substrate by hydrothermal method for photo-electrochemical water splitting[J]. Int. J. Hydrog. Energy, 2019,44(7):25416-25427.

    27. [27]

      CHU S S, LI H, WANG Y Z, MA Q, LI H, ZHANG Q, YANG P. Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tet-racycline[J]. Mater. Lett., 2019,252:219-222. doi: 10.1016/j.matlet.2019.05.145

    28. [28]

      WANG Z H, ZHAO M W, WANG X P, XI Y, HE X J, LIU X D, YAN S S. Hybrid density functional study of band alignment in ZnO/GaN and ZnO/(Ga1-xZnx)(N1-xOx)/GaN heterostructures[J]. Phys. Chem. Chem. Phys., 2012,14(45):15693-15698. doi: 10.1039/c2cp42115a

    29. [29]

      ZHANG Y, WU Z F, GAO P F, FANG D Q, ZHANG S L. Enhanced visible light absorption in ZnO/GaN heterostructured nanofilms[J]. J. Alloy. Compd., 2017,704(5):478-483.

    30. [30]

      ZHANG Y, FANG D Q, ZHANG S L, HUANG R, WEN Y H. Struc-tural and electronic properties of ZnO/GaN heterostructured nanow-ires from first-principles study[J]. Phys. Chem. Chem. Phys., 2016,18(4):3097-3102. doi: 10.1039/C5CP06564J

    31. [31]

      PENG D, ZHENG X J, XIE S F. Preparation and photocatalytic per-formance of GaN/ZnO complexes[J]. J. Inorg. Mater., 2014,29(9):956-960.

    32. [32]

      PENG Y Y, QUE M L, LEE H E, BAO R R, WANG X D, LU J F, YUAN Z Q, LI X Y, TAO J, SUN J L, ZHAI J Y, LEE K Y, PAN C F. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect[J]. Nano Energy, 2019,58(4):633-640.

    33. [33]

      JIA W L, ZHOU M, WANG X M. First-principles study on the opto-electronic properties of Fe-doped GaN[J]. Acta Phys. Sin., 2018,67(10):169-176.

    34. [34]

      FU S S, XIAO Q Q, YAO Y M. First-principles study on the opto-electronic properties of rare earth elements Lu, Sc doped with GaN[J]. J. At. Mol. Phys., 2024,41(1):167-173.

    35. [35]

      YUAN Y L, WU Y W, YU L Y. Preparation and characterization of Ga-doped ZnO microrod ultraviolet light detector[J]. Optics and Precision Engineering, 2024,32(5):643-652.

    36. [36]

      DONG M H, DU A Y, YUAN G M, LI X J. First principles of visible light absorption properties of Ag-doped ZnO/GaN heterojunction[J]. Journal of Terahertz Science and Electronic Information Technology, 2020,18(4):744-749.

    37. [37]

      DONG M H, ZHAO L, WANG M X. Optical properties of Cu-doped GaN/ZnO heterojunction[J]. Journal of Optoelectronics·Laser, 2020,31(5):494-499.

    38. [38]

      YU C Y, LI R, LI T B, DONG H L, JIA W, XU B S. Effect of Indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN het-erojunction light-emitting diodes[J]. Superlattices Microstruct., 2018,120:298-304. doi: 10.1016/j.spmi.2018.05.060

    39. [39]

      CHANG M Q, SHENG Y, SONG Y H, ZHENG K Y, ZHOU X Q, ZOU H F. Luminescence properties and Judd-Ofelt analysis of TiO2: Eu3+nanofibers via polymer-based electrospinning method[J]. RSC Adv., 2016,6(57):52113-52121. doi: 10.1039/C6RA07509F

    40. [40]

      CHEN S, PAN Y. Noble metal interlayer-doping enhances the cata-lytic activity of 2H-MoS2 from first-principles investigations[J]. Int. J. Hydrog. Energy, 2021,46(40):21040-21049. doi: 10.1016/j.ijhydene.2021.03.202

    41. [41]

      SUN Q P, MAO C X, TU Y H. Synthesis of Ni and C co-doped ZnO composites and their photocatalytic properties[J]. J. Environ. Sci., 2024,11(28):1-9.

    42. [42]

      MONKHORST H J, PACK J D. Special points for brillouin-zone inte-grations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    6. [6]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(0)
  • Abstract views(141)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return