Citation: Yan ZHAO, Xiaokang JIANG, Zhonghui LI, Jiaxu WANG, Hengwei ZHOU, Hai GUO. Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242 shu

Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors

  • Corresponding author: Hengwei ZHOU, zhw33221@163.com Hai GUO, ghh@zjnu.cn
  • Received Date: 27 June 2024
    Revised Date: 4 September 2024

Figures(9)

  • A series of Eu3+-doped CaLaGaO4 red-emitting phosphors with different concentrations were prepared via the high-temperature solid phase method. The results indicate that the obtained phosphors can be effectively pumped by a 392 nm near-ultraviolet light. The Eu3+-doped CaLaGaO4 phosphor displayed the characteristic transitions of Eu3+ with the strongest emission at 609 nm, originating from 5D07F2 transition and the luminescence intensity reached its maximum when the concentration of Eu3+ reached 0.3. In addition, the phosphor demonstrated a remarkable color purity value of 96.3% with CIE coordinates (0.613, 0.359) lying closer to the ideal red color CIE coordinates (0.670, 0.330). Furthermore, the photoluminescence emission intensity maintained 75% at 498 K compared to 298 K due to the thermal quenching effect, showcasing excellent thermal stability with an activation energy of 0.151 3 eV.
  • 加载中
    1. [1]

      Li Y Y, Li H Y, Li Y, Li D J, Xie J X, Ma H Y, Qu H Q, Xu J Z, Han Y Y, Wang L Y. Structure, properties and application of Eu3+ doped bismuth molybdate red-emitting phosphor synthesized by sol-gel method[J]. Opt. Mater., 2023,144114336. doi: 10.1016/j.optmat.2023.114336

    2. [2]

      Panda R, Behera M, Kumar R A, Joshi D, Padhi R. Luminescence studies of high color purity red-emitting CaAl4O7∶Eu3+ phosphor prepared by microwave-assisted synthesis technique[J]. J. Alloy. Compd., 2023,968171879. doi: 10.1016/j.jallcom.2023.171879

    3. [3]

      Ding R, Chen Y M, Wang H G, Li W F, Su Y H, Sheng Y, An X Y, Liu L N, Li C. Study on structural luminescence characteristics of a new Dy3+ activated white luminescent phosphor[J]. Phys. B, 2024,690416281. doi: 10.1016/j.physb.2024.416281

    4. [4]

      Hu S A, Liu B, Yang Y G, Du Q, Zhang Y Y, Yu H J, Qiu C C, Wang X P, Li Q G, Wang J Y. Preparation and luminescence characteristics of Bi3+ doped BaLaGa3O7 phosphors[J]. Opt. Mater., 2023,143114220. doi: 10.1016/j.optmat.2023.114220

    5. [5]

      Guo H, Zheng Y L, Shi T N, Qin Z Y, Zhao G Y, Liu Y F, Zhang G H, Wu D H, Dong L P, Hou J S, Fang Y Z. Preparation and photoluminescence properties of high thermal stability Sr3Ga2Sn1.5Si2.5O14∶Eu3+ red phosphors for high-power light-emitting diodes application[J]. Opt. Mater., 2023,20100264.

    6. [6]

      Maske R T, Yerpude A N, Dhoble S J. Wet chemical synthesis of Sm3+ doped Ca10(PO4)6Cl2 phosphor for w-LED application[J]. Mater. Lett: X, 2023,19100214.

    7. [7]

      Santra A, Das A, Murmu S, Ghorai U K. BaTiO3∶Sm3+ nanophosphor with K+ ion incorporation for modulating non-radiative transitions[J]. J. Indian Chem. Soc., 2023,100101071. doi: 10.1016/j.jics.2023.101071

    8. [8]

      Kong Y C, Chen S R, Deng S W, He J, Li X S, Zhou J C. Thiogallate phosphor for white LEDs with water resistance and green light-emitting capability[J]. J. Lumin., 2023,263120096. doi: 10.1016/j.jlumin.2023.120096

    9. [9]

      Wei C, Zhang J, Sun Z, Ran J Y, Li S, Zhu S, Jiang C, Wen Y J, Ran S Q. Na5Y(MoO4)4∶Sm3+ red phosphor with good thermal stability and high color rendering index for plant growth lighting and white light emitting diodes[J]. J. Alloy. Compd., 2024,991174428. doi: 10.1016/j.jallcom.2024.174428

    10. [10]

      Behera M, Panda R, Kumar R, Mishra N K, Kumar K, Monte T D. Microwave-assisted combustion synthesis and characterization studies of novel dysprosium doped yttrium calcium borate (Dy3+∶Y2CaB10O19) phosphor materials for efficient white light applications[J]. Ceram. Int., 2024,50(11):18146-18156. doi: 10.1016/j.ceramint.2024.02.298

    11. [11]

      Zhang X J, Zhang Z Q, Feng Y M, Yuan H L, Wang G L. Luminescence performance of bismuth-activated Ba3Lu2B6O15 phosphors[J]. J. Mol. Struct., 2023,1294136523. doi: 10.1016/j.molstruc.2023.136523

    12. [12]

      Xu S, Zhu D Y, Gong D L, Wu F, Dong H F, Mu Z F. Study on the structure and luminescence properties of a novel Li3Sc2(PO4)3∶Eu3+ orange-red emission phosphor for LEDs[J]. Opt. Mater., 2023,143114239. doi: 10.1016/j.optmat.2023.114239

    13. [13]

      Rohilla P, Rao A S. Energy transfer induced color tunable photoluminescence performance of thermally stable Sm3+/Eu3+ co-doped Ba3MoTiO8 phosphors for white LED applications[J]. J. Mater. Sci., 2023,34(23):1662-1681.

    14. [14]

      Deng M L, Huang S, Sun Y, Wang Y N, Yan Y, Shang M M. A novel broad-band red K2MgSiO4∶Eu2+ phosphor and defect-induced tunable emission from red to yellow[J]. J. Lumin., 2023,263120137. doi: 10.1016/j.jlumin.2023.120137

    15. [15]

      Tang H, Li H, Song R T, Yang Z Q, Zhao R, Guo Z W, Li J P, Wang B, Zhu J. Highly thermostable Ba2Ln2Ge4O13∶Dy3+ (Ln=Y, Gd) phosphors: Synthesis and optical properties[J]. Ceram. Int., 2023,49(19):31898-31906. doi: 10.1016/j.ceramint.2023.07.152

    16. [16]

      Linghu P, Gong X Y, Zhang J, Cui R R, Guo X. A novel red BaLaInO4∶Eu3+ phosphor for WLEDs[J]. J. Solid State Chem., 2023,327124282. doi: 10.1016/j.jssc.2023.124282

    17. [17]

      Deepali , Jayasimhadri M. UV-excited blue- to green-emitting Tb3+-activated sodium calcium metasilicate color tunable phosphor for luminescence devices[J]. Luminescence, 2022,37(9):1465-1474. doi: 10.1002/bio.4319

    18. [18]

      Zou L Y, Yang N, Zhang Z W, Chen J, Shi J X. Improving the quality of red light emitting from Eu3+ by Co-doping Tb3+ in LuBa3(BO3)3[J]. Opt. Mater., 2023,143114199. doi: 10.1016/j.optmat.2023.114199

    19. [19]

      Ruan F Y, Fan G D, Li N, Zhou J F, Li Y, Fan D, Chen Q Q, Lin Z Y. Charge compensation effect of alkali metal ions on luminescence enhancement and negative thermal quenching of Sr1-xLaNaTeO6xEu3+ red phosphors[J]. Ceram. Int., 2024,50(8):12866-12876. doi: 10.1016/j.ceramint.2024.01.194

    20. [20]

      Li J Y, Chen X Y, Gao D, Zhang M X, Zhang M K, Wang S Y, Liu X, Yu R J. A novel fluorapatite-type deep-red CsSr3La(PO4)3F∶Eu3+ phosphor with intense 5D0-7F4 transition for temperature sensors, plant growth lighting, and w-LEDs[J]. J. Lumin., 2024,275120761. doi: 10.1016/j.jlumin.2024.120761

    21. [21]

      Xie F Y, Gu J Q, Zhong S L, Zhang P L, Wen Y H, Li Y N, Xu H L, Yao S Y, Zhang Q H, Li J H. A competitive trivalent-europium-activated phosphor: Achieving highly efficient red light emission in a sodium-rich garnet host[J]. Mater. Today Chem., 2024,37102019. doi: 10.1016/j.mtchem.2024.102019

    22. [22]

      Lee T Y, Park Y, Jeon H. Resonant cavity phosphor[J]. Nat. Commun., 2023,14(1):6661-6669. doi: 10.1038/s41467-023-42296-1

    23. [23]

      Salazar-Medina A J, Navarro R E, Santacruz-O H, Orozco-Valencia A U, Lopez-Esquivel R I, Soberanes Y, Salas-Juarez C J. Luminescence properties of Eu3+ complexes based on macrocyclic ligands and its colorimetric analysis for white warm phosphor[J]. Opt. Quantum Electron., 2024,56(6):1064-1082. doi: 10.1007/s11082-024-07013-2

    24. [24]

      Kumar P, Singh D, Gupta I. UV excitable GdSr2AlO5∶Eu3+ red emitting nanophosphors: Structure refinement, photoluminescence, Judd-Ofelt analysis and thermal stability for w-LEDs[J]. J. Alloy. Compd., 2023,966171410. doi: 10.1016/j.jallcom.2023.171410

    25. [25]

      Jiang Z L, Hu T, Men F C, Yang H, Lv W, Wen D W, Zeng Q G, Gao Y. An efficient and thermally stable red emitting Eu2+ doped oxide for rechargeable portable flashlight[J]. Chem. Eng. J., 2024,482149086. doi: 10.1016/j.cej.2024.149086

    26. [26]

      Hu T, Jiang Z L, Wang B, Yu T, Wen D W, Zeng Q G, Gao Y. Eu2+ luminescence in CaYGaO4 olivine: A new efficient red phosphor for warm illumination[J]. J. Mater. Chem. C, 2023,11(6):2153-2161. doi: 10.1039/D2TC04585K

    27. [27]

      Chi F F, Liu Q, Zhang J R, Jiang B, Niu X H, Liu S L. Energy transfer and photoluminescence properties of CaYGaO4∶Bi3+, Tb3+ phosphors[J]. Opt. Mater., 2023,143114245. doi: 10.1016/j.optmat.2023.114245

    28. [28]

      Gai S J, Gao P X, Ken K, Tang C Z, Zhao Y Y, Wei J Q, Zhang Y, Molokeev M S, Xia M, Zhou Z. Superior quantum efficiency blue-emitting phosphors with high thermal stability toward multipurpose LED applications[J]. Adv. Opt. Mater., 2024,12(14)2302870. doi: 10.1002/adom.202302870

    29. [29]

      Qiu Y F, Cui R R, Zhang J, Deng C Y. A novel Eu3+‑doped SrLaGaO4 red phosphor with high efficiency and color purity for WLED applications[J]. J. Solid State Chem., 2023,327124265. doi: 10.1016/j.jssc.2023.124265

    30. [30]

      Voiculescu A M, Hau S, Stanciu G, Cheorghe C. Effects of Eu3+ concentration on the thermoluminescence properties of narrow-band red-emitting Eu3+∶SrLaGaO4 phosphor[J]. J. Alloy. Compd., 2023,958170507. doi: 10.1016/j.jallcom.2023.170507

    31. [31]

      Guo H J, Chen Y Q, Wang L, Shi Q F, Cui C, Huang P, Qiao J W. Utilizing diametrically opposite thermal quenching luminescence to achieve highly sensitive temperature measurement and anti-counterfeiting[J]. Inorg. Chem. Front., 2024,11(3):799-807. doi: 10.1039/D3QI02063K

    32. [32]

      Xu S, Zhu D Y, Wu F G, Dong H F, Zhang X, Pang W, Mu Z F. High quantum efficiency and excellent thermal stability in Eu3+-activated CaY2ZrGaAl3O12 phosphors for LEDs[J]. Opt. Mater., 2024,150115284. doi: 10.1016/j.optmat.2024.115284

    33. [33]

      Park J Y, Jung J Y, Yang H K. Development of reddish orange-emitting Y2Sn2O7∶Eu3+phosphors for latent fingerprint detection and anti-counterfeit security ink[J]. Mater. Res. Bull., 2024,175112756. doi: 10.1016/j.materresbull.2024.112756

    34. [34]

      Peng X Y, Guo X, Cui R R, Lin-hu P, Zhang J, Deng C Y. Novel orange-red phosphor BaLaGaO4: Sm3+ with high quantum efficiency and good thermal stability for indoor illumination and anti-counterfeiting ink applications[J]. Ceram. Int., 2024,50(17):30111-30123. doi: 10.1016/j.ceramint.2024.05.310

    35. [35]

      Vasanthi B, Gopakumar N, Anjana P S. Thermally stable and red emitting bismuth ions sensitized SrGa2O4∶Eu3+ phosphors for phosphor-converted WLED applications[J]. Solid State Sci., 2024,151107526. doi: 10.1016/j.solidstatesciences.2024.107526

    36. [36]

      Zuo C Y, Chen R J, Jiang X L, Yang Y M, Li C L, Yang W L, Lin H, Liu L N, Li S S, Zeng F M, Su Z M. Effect of ion occupancy and Li+ ion doping on luminescence characteristics of CaLaGaO4∶Bi3+ blue phosphor[J]. Ceram. Int., 2024,50:29580-29589. doi: 10.1016/j.ceramint.2024.05.253

    37. [37]

      Cao J L, Ren Q, Ou H. Colour tunable Ca3Y2Ge3O12∶Tb3+, Eu3+ phosphors with high quantum yield for white LED applications[J]. Ceram. Int., 2024,50(9):15668-15676. doi: 10.1016/j.ceramint.2024.02.047

    38. [38]

      Yang S W, Wu M, He C, Wu Y P, Zhang Y J, Yu J J. High quantum efficiency blue phosphor K2SrCa(PO4)2∶Eu2+ for plant growth[J]. J. Alloy. Compd., 2024,989:174295-174305. doi: 10.1016/j.jallcom.2024.174295

    39. [39]

      Kong J J, Wang Y J, Tong W M, Li L F, Xu Y, Chen N M, Liu N J. Highly efficient cyan-red emission in self-activated Sr9In(VO4)7xEu3+ phosphors for applications in W-LEDs and optical thermometry[J]. J. Alloy. Compd., 2024,983173936. doi: 10.1016/j.jallcom.2024.173936

    40. [40]

      Tran M T, Van Quang N, Huyen N T, Tu N, Du N V, Trung D Q, Tuan N T, Hung N D, Viet D X, Tung D T, Kien N D T, Tam T T H, Huy P T. High quantum efficiency and excellent color purity of red-emitting Eu3+-heavily doped Gd(BO2)3-Y3BO6-GdBO3 phosphors for NUV-pumped WLED applications[J]. RSC Adv., 2023,13(36):25069-25080. doi: 10.1039/D3RA03955B

    41. [41]

      Wu H, Zhang J, Jiang C, Zhai Z Y. Photoluminescence of Eu3+ in silicate-based phosphors by near-infrared and near-ultraviolet excitation for multifunctional applications[J]. Infrared Phys. Technol., 2023,133104867. doi: 10.1016/j.infrared.2023.104867

    42. [42]

      Chen Y L, Wu H Y, Li Y M, Liu Z P, Wan J Y, Hu Y H. Synthesis of Sr2Ta2O7∶Eu3+ red phosphor and its luminescence characteristics[J]. J. Mater. Sci.: Mater. Electron., 2023,34(24):1740-1749. doi: 10.1007/s10854-023-11187-y

    43. [43]

      Ru J J, Zhao B, Zeng F, Guo F Y. Color tuning via energy transfer of K2Ba(MoO4)2∶Dy3+/Eu3+ phosphors with the thermal-stable property[J]. Bull. Mater. Sci., 2024,47(2):74-84. doi: 10.1007/s12034-023-03130-y

    44. [44]

      Sahu M, Sahu I P. Studies on the structural, thermal, and luminescence properties of Sr1-xZrSi2O7xEu3+ phosphors for solid-state lighting[J]. Appl. Phys. A, 2024,130(5):322-339. doi: 10.1007/s00339-024-07458-y

    45. [45]

      Wu X L, Wu Z, Ren Q, Hai O, Liu K X. Tuning of emission in BaLa1-x-yGa3O7xDy3+, yEu3+ by local symmetry effects for WLEDs[J]. Polyhedron, 2024,256116995. doi: 10.1016/j.poly.2024.116995

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(7)
  • Abstract views(834)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return