Citation: Zhiyuan TONG, Ziyuan LI, Ke ZHANG. Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238 shu

Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode

Figures(7)

  • Here, we have prepared a kind of anode current collector based on Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte and copper composite layer with 3D porous structure by phase-transformation co-banding casting method, and the addition of LLZTO provides abundant ion transport channels and nucleation sites for lithium ions, while the copper with 3D porous structure provides enlarged specific surface area and can accommodate a large amount of dead lithium and other by-products generated in electrochemical process, and at the same time, the phase-transformation co-banding casting method is easy to operate and suitable for anode interface impedance increase. The prepared Cu-LLZTO@Li symmetric cell achieved a long cycle life of 280 h at a current density of 4 mA·cm-2 with an ultra-low voltage hysteresis of 25 mV, which was 4 times and 3 times higher than that of Cu foil and 3D-Cu, respectively. Thanks to the constructed stable solid electrolyte interphase (SEI) film and no lithium dendrite generation, the Cu-LLZTO@Li symmetric cell exhibited the lowest ohmic resistance (2.749 Ω·cm-2) and interface resistance (0.544 Ω·cm-2) compared to Cu foil@Li and 3D-Cu@Li. In the half-cell, Cu-LLZTO did not produce a soft short circuit and maintained 98.4% Coulombic efficiency over 70 cycles, and the charging and discharging voltage plateau was consistently maintained at a low level of 0.15 V during the cycle.
  • 加载中
    1. [1]

      XIA S X, YANG C W, JING Z Y, FAN W J, YUAN T, PANG Y P, SUN H, CHEN T Q, LI X, ZHENG S Y. Towards practical lithium metal batteries with composite scaffolded lithium metal: An overview[J]. Adv. Compos. Hybrid Mater., 2023, 6(6): 198  doi: 10.1007/s42114-023-00769-3

    2. [2]

      LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845  doi: 10.1016/j.joule.2018.03.008

    3. [3]

      TANG W, YIN X S, CHEN Z X, FU W, LOH K P, ZHENG G W. Chemically polished lithium metal anode for high energy lithium metal batteries[J]. Energy Storage Mater., 2018, 14: 289-296  doi: 10.1016/j.ensm.2018.05.009

    4. [4]

      TANG W H, MA J Y, ZHANG X Q, LI Y J, MENG S Q, ZHANG Y L, DONG H Y, LIU R P, GAO R, FENG M. Interfacial strategies towards highly stable Li-metal anode of liquid-based Li-metal batteries[J]. Energy Storage Mater., 2024, 64: 103084  doi: 10.1016/j.ensm.2023.103084

    5. [5]

      CHEN X R, LI B Q, ZHU C, ZHANG R, CHENG X B, HUANG J Q, ZHANG Q. A coaxial-lnterweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Adv. Energy Mater., 2019, 9(39): 1901932  doi: 10.1002/aenm.201901932

    6. [6]

      MARTIN C, GENOVESE M, LOULI A J, WEBER R, DAHN J R. Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells[J]. Joule, 2020, 4(6): 1296-1310  doi: 10.1016/j.joule.2020.04.003

    7. [7]

      GHAZI Z A, SUN Z H, SUN C G, QI F L, AN B G, LI F, Cheng H M. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15(32): 1900687  doi: 10.1002/smll.201900687

    8. [8]

      SHEN X, ZHANG R, SHI P, CHEN X, ZHANG Q. How does external pressure shape Li dendrites in Li metal batteries?[J]. Adv. Energy Mater., 2021, 11(10): 2003416  doi: 10.1002/aenm.202003416

    9. [9]

      ZACHMAN M J, TU Z Y, CHOUDHURY S, ARCHER L A, KOURKOUTIS L F. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349  doi: 10.1038/s41586-018-0397-3

    10. [10]

      NING Z Y, LI G C, MELVIN D L R, CHEN Y, BU J F, SPENCER-JOLLY D, LIU J L, HU B K, GAO X W, PERERA J, GONG C, PU S D, ZHANG S M, LIU B Y, HARTLEY G O, BODEY A J, TODD R I, GRANT P S, ARMSTRONG D E J, MARROW T J, MONROE C W, BRUCE P G. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618(7964): 287-293  doi: 10.1038/s41586-023-05970-4

    11. [11]

      LIU W, LIU P C, MITLIN D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Adv. Energy Mater., 2020, 10(43): 2002297  doi: 10.1002/aenm.202002297

    12. [12]

      LI A J, LIAO X B, ZHANG H R, SHI L, WANG P Y, CHENG Q, BOROVILAS J, LI Z Y, HUANG W L, FU Z X, DONTIGNY M, ZAGHIB K, MYERS K, CHUAN X Y, CHEN X, YANG Y. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries[J]. Adv. Mater., 2020, 32(2): 1905517  doi: 10.1002/adma.201905517

    13. [13]

      ZHOU S Y, CHEN W X, SHI J, LI G, PEI F, LIU S G, YE S B, XIAO L P, WANG M S, WANG D, QIAO Y, HUANG L, XU G L, LIAO H G, CHEN J F, AMINE K, SUN S G. Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium-metal batteries[J]. Energy Environ. Sci., 2022, 15(1): 196-205  doi: 10.1039/D1EE02205A

    14. [14]

      HUO H Y, CHEN Y, LI R Y, ZHAO N, LUO J, DA SILVA J G P, MUECKE R, KAGHAZCHI P, GUO X X, SUN X L. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries[J]. Energy Environ. Sci., 2020, 13(1): 127-134  doi: 10.1039/C9EE01903K

    15. [15]

      FU C Y, VENTURI V, KIM J, AHMAD Z, ELLS A W, VISWANATHAN V, HELMS B A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries[J]. Nat. Mater., 2020, 19(7): 758-766  doi: 10.1038/s41563-020-0655-2

    16. [16]

      TANG Y F, ZHANG L Q, CHEN J Z, SUN H M, YANG T T, LIU Q N, HUANG Q, ZHU T, HUANG J Y. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy Environ. Sci., 2021, 14(2): 602-642  doi: 10.1039/D0EE02525A

    17. [17]

      CHENG X B, ZHANG R, ZHAO C Z, ZHANG Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473  doi: 10.1021/acs.chemrev.7b00115

    18. [18]

      LI F Q, SUN Z, YIN S, LIU S L, ZHANG Z L, LIU F Y. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chin. J. Eng., 2023, 45(11): 1928-1938

    19. [19]

      ZHU J G, LI P K, CHEN X, LEGUT D, FAN Y C, ZHANG R F, LU Y Y, CHENG X B, ZHANG Q F. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode[J]. Energy Storage Mater., 2019, 16: 426-433  doi: 10.1016/j.ensm.2018.06.023

    20. [20]

      LEE Y G, FUJIKI S, JUNG C, SUZUKI N, YASHIRO N, OMODA R, KO D, SHIRATSUCHI T, SUGIMOTO T, RYU S, KU J H, WATANABE T, PARK Y, AIHARA Y, IM D, HAN I T. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nat. Energy, 2020, 5(4): 299-308  doi: 10.1038/s41560-020-0575-z

    21. [21]

      BRISSOT C, ROSSO M, CHAZALVIEL J N, BAUDRY P, LASCAUD S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochim. Acta, 1998, 43(10): 1569-1574

    22. [22]

      CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys. Rev. A, 1990, 42(12): 7355-7367  doi: 10.1103/PhysRevA.42.7355

    23. [23]

      LI N R, JIA T Q, LIU Y R, OUYANG Y F, LV Y, ZHONG G, WANG Y F, SUN B, LU S R, HUANG S F, KANG F Y, CAO Y D. Super-three-dimensional lithiophilic Cu-based current collector for anode-free lithium metal battery[J]. Mater. Today Energy, 2023, 36: 101341  doi: 10.1016/j.mtener.2023.101341

    24. [24]

      CHEN C L, LI S P, NOTTEN P H L, ZHANG Y H, HAO Q L, ZHANG X G, LEI W. 3D printed lithium-metal full batteries based on a high-performance three-dimensional anode current collector[J]. ACS Appl. Mater. Interfaces, 2021, 13(21): 24785-24794  doi: 10.1021/acsami.1c03997

    25. [25]

      KIM J M, JIA H, KOIRALA K P, LIU D Y, SIMMONS A, ENGELHARD M H, AHMED R A, ZHANG Y P, WANG C M, ZHANG J G, XU W. Three-dimensional polymeric-scaffold-based current collector for a lithium metal anode toward high-energy-density batteries[J]. ACS Energy Lett., 2024, 9(3): 919-926  doi: 10.1021/acsenergylett.3c02752

    26. [26]

      LIU C C, WU B R, ZHANG Y X, LIU T, CUI J W, HUANG L J, TAN G Q, ZHANG L, SU Y F, WU F. Dense cuprous oxide sheath decorated three-dimensional copper foam enabling stable lithium metal anodes[J]. J. Mater. Chem. A, 2023, 11(46): 25455-25464  doi: 10.1039/D3TA04259F

    27. [27]

      JIANG L M, LIU Z F, TANG J, ZHANG L, SHI K, TIAN Z Q, LIU P K, SUN L N, TIAN Z W. Three-dimensional micro-fabrication on copper and nickel[J]. J. Electroanal. Chem., 2005, 581(2): 153-158  doi: 10.1016/j.jelechem.2004.11.041

    28. [28]

      ZHOU B X, BONAKDARPOUR A, STOŠEVSKI I, FANG B Z, WIKINSON D P. Modification of Cu current collectors for lithium metal batteries—A review[J]. Prog. Mater. Sci., 2022, 130: 100996  doi: 10.1016/j.pmatsci.2022.100996

    29. [29]

      ZHANG H L, LIU S M, KANG W, HUANG Z Z, HU G Z, WANG S R. Application of phase inversion method in solid oxide fuel cells[J]. J. Ceram., 2020, 41(6): 796-806

    30. [30]

      BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Phys. Chem. Chem. Phys., 2015, 17(14): 8670-8679  doi: 10.1039/C4CP05865H

    31. [31]

      YUAN H, DAI H F, WEI X Z, MING P W. Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times[J]. Chem. Eng. J., 2021, 418: 129358  doi: 10.1016/j.cej.2021.129358

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(4)
  • Abstract views(302)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return