Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure
- Corresponding author: Peng WEI, weipeng@dhu.edu.cn Tao YI, yitao@dhu.edu.cn
Citation:
Yuan ZHU, Xiaoda ZHANG, Shasha WANG, Peng WEI, Tao YI. Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 183-192.
doi:
10.11862/CJIC.20240232
STEINBRÜCHEL C. Patterning of copper for multilevel metallization: Reactive ion etching and chemical-mechanical polishing[J]. Appl. Surf. Sci., 1995,91(1/2/3/4):139-146.
RAMAN C D, KANMANI S. Textile dye degradation using nano zero valent iron: A review[J]. J. Environ. Manage., 2016,177:341-355. doi: 10.1016/j.jenvman.2016.04.034
LIU Z L, XIE J Y, DENG Z R, WANG M L, DANG D D, LUO S, WANG Y F, SUN Y J, XIA L Q, DING X Z. Enhancing the insecticidal activity of new Bacillus thuringiensis X023 by copper ions[J]. Microb. Cell Fact., 2020,19(1)195. doi: 10.1186/s12934-020-01452-8
RUYTERS S, SALAETS P, OORTS K, SMOLDERS E. Copper toxicity in soils under established vineyards in Europe: A survey[J]. Sci. Total Environ., 2013,443:470-477. doi: 10.1016/j.scitotenv.2012.11.001
TAHIR N, ASHRAF A, WAQAR S H B, RAFAE A, KANTAMNENI L, SHEIKH T, KHAN R. Copper deficiency, a rare but correctable cause of pancytopenia: A review of literature[J]. Expert Rev. Hematol., 2022,15(11):999-1008. doi: 10.1080/17474086.2022.2142113
BALAMURUGAN K, SCHAFFNER W. Copper homeostasis in eukaryotes: Teetering on a tightrope[J]. Biochim. Biophys. Acta‒Mol. Cell Res., 2006,1763(7):737-746. doi: 10.1016/j.bbamcr.2006.05.001
MILNE D B. Copper intake and assessment of copper status[J]. Am. J. Clin. Nutr., 1998,67(5):1041S-1045S. doi: 10.1093/ajcn/67.5.1041S
KRASNOVSKAYA O, NAUMOV A, GUK D, GORELKIN P, EROFEEV A, BELOGLAZKINA E, MAJOUGA A. Copper coordination compounds as biologically active agents[J]. Int. J. Mol. Sci., 2020,21(11)3965. doi: 10.3390/ijms21113965
HSU C C, SENUSSI N H, FERTRIN K Y, KOWDLEY K V. Iron overload disorders[J]. Hepatol. Commun., 2022,6(8):1842-1854. doi: 10.1002/hep4.2012
D'MELLO S R, KINDY M C. Overdosing on iron: Elevated iron and degenerative brain disorders[J]. Exp. Biol. Med., 2020,245(16):1444-1473. doi: 10.1177/1535370220953065
ODAI T, TERAUCHI M, SUZUKI R, KATO K, HIROSE A, MIYASAKA N. Severity of subjective forgetfulness is associated with high dietary intake of copper in Japanese senior women: A cross-sectional study[J]. Food Sci. Nutr., 2020,8(8):4422-4431. doi: 10.1002/fsn3.1740
DAMERON C T, HARRISON M D. Mechanisms for protection against copper toxicity[J]. Am. J. Clin. Nutr., 1998,67(5):1091S-1097S. doi: 10.1093/ajcn/67.5.1091S
SUBRAMANIYAM V, SUBASHCHANDRABOSE S R, THAVAMANI P, CHEN Z L, KRISHNAMURTI G S R, NAIDU R, MEGHARAJ M. Toxicity and bioaccumulation of iron in soil microalgae[J]. J. Appl. Phycol., 2016,28(5):2767-2776. doi: 10.1007/s10811-016-0837-0
KIM P, ZHANG C C, THORÖE-BOVELETH S, WEISKIRCHEN S, GAISA N T, BUHL E M, STREMMEL W, MERLE U, WEISKIRCHEN R. Accurate measurement of copper overload in an experimental model of Wilson disease by laser ablation inductively coupled plasma mass spectrometry[J]. Biomedicines, 2020,8(9)356. doi: 10.3390/biomedicines8090356
SOLOVYEV N, ALA A, SCHILSKY M, MILLS C, WILLIS K, HARRINGTON C F. Biomedical copper speciation in relation to Wilson's disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2020,1098:27-36. doi: 10.1016/j.aca.2019.11.033
WEINSTOCK N, UHLEMANN M. Automated determination of copper in undiluted serum by atomic absorption spectroscopy[J]. Clin. Chem., 1981,27(8):1438-1440. doi: 10.1093/clinchem/27.8.1438
SOFIKITIS A M, COLIN J L, DESBOEUFS K V, LOSNO R. Iron analysis in atmospheric water samples by atomic absorption spectroscopy (AAS) in water-methanol[J]. Anal. Bioanal. Chem., 2004,378(2):460-464. doi: 10.1007/s00216-003-2282-6
DASTANGOO H, MAJIDI M R, HORMOZI M K. Stripping voltammetry on palladized aluminum: A novel sensing platform for trace analysis of copper[J]. Microchem. J., 2023,187108404. doi: 10.1016/j.microc.2023.108404
INAUDI P, ABOLLINO O, ARGENZIANO M, MALANDRINO M, GUIOT C, BERTINETTI S, FAVILLI L, GIACOMINO A. Advancements in portable voltammetry: A promising approach for iron speciation analysis[J]. Molecules, 2023,28(21)7404. doi: 10.3390/molecules28217404
QUE E L, DOMAILLE D W, CHANG C J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging[J]. Chem. Rev., 2008,108(5):1517-1549. doi: 10.1021/cr078203u
WU Z T, GUO Y, JIANG W W, YANG Y Q, WEI P, YI T. Recent process in organic small molecular fluorescent probes for tracking markers of tumor redox balance[J]. Trac‒Trends Anal. Chem., 2024,170117461. doi: 10.1016/j.trac.2023.117461
WEN Y, JING N, ZHANG M, HUO F J, LI Z Y, YIN C X. A space-dependent 'enzyme-substrate' type probe based on 'carboxylesterase-amide group' for ultrafast fluorescent imaging orthotopic hepatocellular carcinoma[J]. Adv. Sci., 2023,10(8)2206681. doi: 10.1002/advs.202206681
WEN Y, LONG Z Q, HUO F J, YIN C X. Novel strategy for accurate tumor labeling: Endogenous metabolic imaging through metabolic probes[J]. Sci. China Chem., 2022,65(12):2517-2527. doi: 10.1007/s11426-022-1372-y
ZHANG Z X, TAN W J, ZHANG R N, GUAN S W, MIAO J, ZHANG M. A dendrimer consisting of a pyrene core and a 9-phenylcarbazole periphery as a multi-functional fluorescent probe for iodide, iron(Ⅲ)and mercury(Ⅱ)[J]. Microchim. Acta, 2019,186(8)586. doi: 10.1007/s00604-019-3661-9
SUN S H, HU W T, GAO H F, QI H L, DING L P. Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2+ and anions[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2017,184:30-37. doi: 10.1016/j.saa.2017.04.073
QIN Z H, SU W W, LIU P, MA J M, ZHANG Y R, JIAO T F. Facile preparation of a rhodamine B derivative-based fluorescent probe for visual detection of iron ions[J]. ACS Omega, 2021,6(38):25040-25048. doi: 10.1021/acsomega.1c04206
GAUTHAMA B U, NARAYANA B, SAROJINI B K, KODLADY S N, SANGAPPA Y, KUDVA A K, RAGHU S V. A versatile rhodamine B-derived fluorescent probe for selective copper(Ⅱ) sensing[J]. Inorg. Chem. Commun., 2022,141109501. doi: 10.1016/j.inoche.2022.109501
ARON A T, LOEHR M O, BOGENA J, CHANG C J. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells[J]. J. Am. Chem. Soc., 2016,138(43):14338-14346. doi: 10.1021/jacs.6b08016
CHEN B X, WANG L L, ZHAO Y F, NI Y, XIN C Q, ZHANG C W, LIU J H, GE J Y, LI L, HUANG W. Photocontrollable fluorogenic probes for visualizing near-membrane copper(Ⅱ) in live cells[J]. RSC Adv., 2017,7(49):31093-31099. doi: 10.1039/C7RA03559D
CHEN Y, LONG Z Q, WANG C C, ZHU J J, WANG S S, LIU Y, WEI P, YI T. A lysosome-targeted near-infrared fluorescent probe for cell imaging of Cu2+[J]. Dyes Pigment., 2022,204110472. doi: 10.1016/j.dyepig.2022.110472
GOPALA L, CHA Y, LEE M H. Versatile naphthalimides: Their optical and biological behavior and applications from sensing to therapeutic purposes[J]. Dyes Pigment., 2022,201110195. doi: 10.1016/j.dyepig.2022.110195
CHEVALIER A. The how and why of naphthalimide/heterocycle-fused hybrid dyes: An overview of the latest developments in the quest for dyes with innovative optical properties[J]. Org. Biomol. Chem., 2023,21(37):7498-7510. doi: 10.1039/D3OB01035J
DONG H Q, WEI T B, MA X Q, YANG Q Y, ZHANG Y F, SUN Y J, SHI B B, YAO H, ZHANG Y M, LIN Q. 1, 8-Naphthalimide-based fluorescent chemosensors: Recent advances and perspectives[J]. J. Mater. Chem. C, 2020,8(39):13501-13529. doi: 10.1039/D0TC03681A
KAUR G, SINGH I, TANDON N, TANDON R, BHAT A A. 1, 8-Naphthalimide-based chemosensors: A promising strategy for detection of metal ions in environmental and biological systems[J]. ChemistrySelect, 2023,8(44)e202301661. doi: 10.1002/slct.202301661
HAN C, SUN S B, JI X, WANG J Y. Recent advances in 1, 8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules[J]. Trac‒Trends Anal. Chem., 2023,167117242. doi: 10.1016/j.trac.2023.117242
SARAVANAN A, SUBASHINI G, SHYAMSIVAPPAN S, SURESH T, KADIRVELU K, BHUVANESH N, NANDHAKUMAR R, MOHAN P S. A selective fluorescence chemosensor: Pyrene motif Schiff base derivative for detection of Cu2+ ions in living cells[J]. J. Photochem. Photobiol. A‒Chem., 2018,364:424-432. doi: 10.1016/j.jphotochem.2018.06.021
WEI J H, SUN H, JIANG Y, MIAO B X, HAN X E, ZHAO Y, NI Z H. A novel 1, 8-naphthalimide-based Cu2+ ion fluorescent probe and its bioimaging application[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2021,261120037. doi: 10.1016/j.saa.2021.120037
LI X Y, GUO Y F, XU T T, FANG M, XU Q W, ZHANG F, WU Z Y, LI C, ZHU W J. A highly sensitive naphthalimide-based fluorescent probe for detection of Cu2+ via selective hydrolysis reaction and its application in practical samples[J]. J. Chin. Chem. Soc., 2020,67(6):1070-1077. doi: 10.1002/jccs.201900315
DALBERA S, KULOVI S, DALAI S. Pyrene-based Schiff base as selective chemosensor for copper(Ⅱ) and sulfide ions[J]. ChemistrySelect, 2018,3(23):6561-6569. doi: 10.1002/slct.201801205
WANG H, CUI J J, FANG X H, ZHANG W B, WANG J J, CHEN S Y, QIAN J H. Fluorescent detection of copper ions with acylhydrazine-based probes: Effects of substitute and its position[J]. Dyes Pigment., 2022,197109954. doi: 10.1016/j.dyepig.2021.109954
MENG Z Y, WANG Z L, LIANG Y Y, ZHOU G C, LI X Y, XU X, YANG Y Q, WANG S F. A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption of Cu2+[J]. Int. J. Biol. Macromol., 2023,239124261. doi: 10.1016/j.ijbiomac.2023.124261
PARK S Y, KIM W, PARK S H, HAN J, LEE J, KANG C, LEE M H. An endoplasmic reticulum-selective ratiometric fluorescent probe for imaging a copper pool[J]. Chem. Commun., 2017,53(32):4457-4460. doi: 10.1039/C7CC01430A
WANG S C, SHENG Z H, YANG Z G, HU D H, LONG X J, FENG G, LIU Y B, YUAN Z, ZHANG J J, ZHENG H R, ZHANG X J. Activatable small-molecule photoacoustic probes that cross the blood-brain barrier for visualization of copper(Ⅱ) in mice with Alzheimer's disease[J]. Angew. Chem.‒Int. Edit., 2019,58(36):12415-12419. doi: 10.1002/anie.201904047
WEI Y J, WANG N N, LI D L, WANG G, HE Y. Study on the fluorescence modulation of benzimidazole through energy transfer and photochromic isomerization in the pillar(5)arene-based supermolecular system[J]. React. Funct. Polym., 2019,144104351. doi: 10.1016/j.reactfunctpolym.2019.104351
FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, PETERSSON G A, NAKATSUJI H, LI X, CARICATO M, MARENICH A V, BLOINO J, JANESKO B G, GOMPERTS R, MENNUCCI B, HRATCHIAN H P, ORTIZ J V, IZMAYLOV A F, SONNENBERG J L, WILLIAMS-YOUNG D, DING F, LIPPARINI F, EGIDI F, GOINGS J, PENG B, PETRONE A, HENDERSON T, RANASINGHE D, ZAKRZEWSKI V G, GAO J, REGA N, ZHENG G, LIANG W, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T, THROSSELL K, MONTGOMERY JR. J A, PERALTA J E, OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K, RENDELL A P, BURANT J C, IYENGAR S S, TOMASI J, COSSI M, MILLAM J M, KLENE M, ADAMO C, CAMMI R, OCHTERSKI J W, MARTIN R L, MOROKUMA K, FARKAS O, FORESMAN J B, FOX D J. Gaussian 16, Revision C. 01[CP]. Gaussian, Inc., Wallingford CT, 2016.
SAID A I, STANEVA D, ANGELOVA S, GRABCHEV I. A multi-channel rhodamine-pyrazole based chemosensor for sensing ph, Cu2+, CN- and Ba2+ and its function as a digital comparator[J]. J. Photochem. Photobiol. A‒Chem., 2022,433114218. doi: 10.1016/j.jphotochem.2022.114218
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Tao Liu , Xuwei Han , Xueyi Sun , Weijie Zhang , Ke Gao , Runan Min , Yuting Tian , Caixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Linfang Wang , Jing Liu , Minghao Ren , Wei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Pei Huang , Weijie Zhang , Junping Wang , Fangjun Huo , Caixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778
Lanyun Zhang , Weisi Wang , Yu-Qiang Zhao , Rui Huang , Yuxun Lu , Ying Chen , Liping Duan , Ying Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
From A to R: blank, Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Na+, NH4+, Ni2+, Pb2+, Sn2+, Ti4+, Zn2+.