Citation: Zhuo WANG, Xiaotong LI, Zhipeng HU, Junqiao PAN. Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223 shu

Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties

Figures(7)

  • Bi nanoparticles were decorated on three-dimensional porous carbon (3DPC) to prepare Bi/3DPC composite, in which the 3DPC acts as a carbon framework to buffer the volume expansion of the material during discharging and charging and to enhance the electrical conductivity of the material. Besides, the micropores and mesopores of 3DPC can increase the specific surface area of the material and provide active sites for the adsorption of sodium ions. Constructing nanoscale bismuth particles cushions the structural destruction during charge and discharge processes. The impedance decreased after 50 cycles at 0.5 A·g-1, which indicates good long-term cycle stability of Bi/ 3DPC composite. And the charge storage mechanism of the materials was explored by performing cycle voltammetry tests at different scan rates, where capacitance behavior predominated. Meanwhile, Bi nanoparticles and the 3DPC take advantage of the synergistic effect, showing longterm cycle stability in sodium ion batteries. When placed under the current density of 5 A·g-1, Bi/3DPC maintained a capacity of 268.52 mAh·g-1 after 1 000 cycles.
  • 加载中
    1. [1]

      WANG J W, LIU X H, MAO S X, HUANG J Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction[J]. Nano Lett., 2012,12(11):5897-5902. doi: 10.1021/nl303305c

    2. [2]

      DARWICHE A, MARINO C, SOUGRATI M T, FRAISSE B, STIEVANO L, MONCONDUIT L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism[J]. J. Am. Chem. Soc., 2012,134(51):20805-20811. doi: 10.1021/ja310347x

    3. [3]

      KUBOTA K, DAHBI M, HOSAKA T, KUMAKURA S, KOMABA S. Towards K-ion and Na-ion batteries as "beyond Li ion"[J]. Chem. Rec., 2018,18(4):459-479. doi: 10.1002/tcr.201700057

    4. [4]

      CHENG X L, LI D J, WU Y, XU R, YU Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries[J]. J. Mater. Chem. A, 2019,7(9):4913-4921.

    5. [5]

      LIN Z H, QIU X Q, ZU X H, ZHANG X S, ZHONG L, SUN S R, HAO S H, SUN Y J, ZHANG W L. Ultra-high-rate Bi anode encapsulated in 3D lignin-derived carbon framework for sodium-ion hybrid capacitors[J]. Rare Metals, 2024,43(3):1037-1047. doi: 10.1007/s12598-023-02508-5

    6. [6]

      ZHOU J, CHEN J C, CHEN M X, WANG J, LIU X Z, WEI B, WANG Z C, LI J J, GU L, ZHANG Q H, WANG H, GUO L. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries[J]. Adv. Mater., 2019,31(12)1807874. doi: 10.1002/adma.201807874

    7. [7]

      HU Z J, LI X Y, QU J K, ZHAO Z Q, XIE H W, YIN H Y. Electrolytic bismuth/carbon nanotubes composites for high-performance sodium-ion battery anodes[J]. J. Power Sources, 2021,496229830. doi: 10.1016/j.jpowsour.2021.229830

    8. [8]

      LIANG Y Z, SONG N, ZHANG Z C Y, CHEN W H, FENG J K, XI B J, XIONG S L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage[J]. Adv. Mater., 2022,34(28)2202673. doi: 10.1002/adma.202202673

    9. [9]

      KIM H, HONG J, PARK Y U, KIM J, HWANG I, KANG K. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv. Funct. Mater., 2015,25(4):534-541. doi: 10.1002/adfm.201402984

    10. [10]

      YANG H, XU R, YAO Y, YE S F, ZHUO X F, YU Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes[J]. Adv. Funct. Mater., 2019,29(13)1809195. doi: 10.1002/adfm.201809195

    11. [11]

      YUAN H C, MA F X, WEI X B, LAN J L, LIU Y, YU Y H, YANG X P, PARK H S. Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells[J]. Adv. Energy Mater., 2020,10(37)2001418. doi: 10.1002/aenm.202001418

    12. [12]

      CAI S, YAN F, ZHAO Y X, LI M Q, CHEN Y W, HE X R, WANG C. Hierarchical micro-composite assembled from Bi spheres and expanded graphite flakes as anodes for sodium-ion half/full cells with excellent comprehensive electrochemical performance[J]. Chem. Eng. J., 2022,430132938. doi: 10.1016/j.cej.2021.132938

    13. [13]

      YANG F H, YU F, ZHANG Z A, ZHANG K, LAI Y Q, LI J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries[J]. Chem.‒Eur. J., 2016,22(7):2333-2338. doi: 10.1002/chem.201503272

    14. [14]

      JIN Y Q, YUAN H C, LAN J L, YU Y H, LIN Y H, YANG X P. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: The case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale, 2017,9(35):13298-13304. doi: 10.1039/C7NR04912A

    15. [15]

      YIN H, LI Q W, CAO M L, ZHANG W, ZHAO H, LI C, HUO K F, ZHU M Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries[J]. Nano Res., 2017,10(6):2156-2167. doi: 10.1007/s12274-016-1408-z

    16. [16]

      LIU R Z, LI W X, YANG X J, LU H, GAO Y P, SHUAI H L. Bismuth nanoparticles confined in multi-walled carbon nanotubes toward enhanced sodium storage anodes[J]. J. Alloy. Compd., 2023,967171660. doi: 10.1016/j.jallcom.2023.171660

    17. [17]

      LIU S, FENG J K, BIAN X F, LIU J, XU H. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries[J]. J. Mater. Chem., 2016,4(26):10098-10104. doi: 10.1039/C6TA02796B

    18. [18]

      LI X T, LIANG H J, LIU X L, SUN R, QIN Z X, FAN H S, ZHANG Y F. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries[J]. Chem. Eng. J., 2021,425130657. doi: 10.1016/j.cej.2021.130657

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(3)
  • Abstract views(510)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return