Citation: Yuan CONG, Yunhao WANG, Wanping LI, Zhicheng ZHANG, Shuo LIU, Huiyuan GUO, Hongyu YUAN, Zhiping ZHOU. Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219 shu

Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction

  • Corresponding author: Yuan CONG, congyuan@njit.edu.cn
  • Received Date: 11 June 2024
    Revised Date: 23 September 2024

Figures(5)

  • A simple two-step hydrothermal method synthesized four different CdS/Fe3O4 photocatalysts with varying ratios of mass of CdS to Fe3O4. The composition and morphology of the prepared samples were investigated using X-ray diffraction (XRD), Raman spectrum, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Solid UV reflectance spectra testing found that CdS/Fe3O4 nanocomposites had good light absorption throughout the spectral range, promoting their photocatalytic properties. Under visible light irradiation, CdS/Fe3O4 (2:5) with a mass ratio of 2:5 exhibited excellent photocatalytic performance, with a degradation rate of 98.8% for rhodamine B. Furthermore, after five cycles of photocatalytic degradation reaction, the rhodamine B degradation rate remained at 96.2%, indicating that the photocatalysts have good photocatalytic stability.
  • 加载中
    1. [1]

      Escher B I, Stapleton H M, Schymanski E L. Tracking complex mixtures of chemicals in our changing environment[J]. Science, 2020,367(6476):388-392. doi: 10.1126/science.aay6636

    2. [2]

      Miao Q Y, Wang Y, Chen D R, Cao N, Pang J H. Development of novel ionic covalent organic frameworks composite nanofiltration membranes for dye/salt separation[J]. J. Hazard. Mater., 2023,465133049.

    3. [3]

      Yin H F, Yuan C Y, Lv H J, Chen X, Zhang K Y, Zhang Y Z. Construction of 0D/2D CeO2/CdS direct Z-scheme heterostructures for effective photocatalytic H2 evolution and Cr(Ⅵ) reduction[J]. Sep. Purif. Technol., 2022,295121294. doi: 10.1016/j.seppur.2022.121294

    4. [4]

      Yin H F, Yuan C Y, Lv H J, Zhang K Y, Chen X, Zhang Y Z. Hierarchical Ti3C2 MXene/Zn3In2S6 Schottky junction for efficient visible-light-driven Cr(Ⅵ) photoreduction[J]. Ceram. Int., 2022,48(8):11320-11329. doi: 10.1016/j.ceramint.2021.12.355

    5. [5]

      Zhang M, Arif M, Dong Y Y, Chen X B, Liu X H. Z-scheme TiO2-x@ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics[J]. Colloids Surf. A Physicochem. Eng. Asp., 2022,649(222)129530.

    6. [6]

      Yang H, Zhao Z C, Yang Y P, Zhang Z, Chen W, Yan R Q, Jin Y X, Zhang J. Defective WO3 nanoplates controllably decorated with MIL-101(Fe) nanoparticles to efficiently remove tetracycline hydrochloride by S-scheme mechanism[J]. Sep. Purif. Technol., 2022,300121846. doi: 10.1016/j.seppur.2022.121846

    7. [7]

      Zhang K J, Gu S W, Wu Y, Fan Q W, Zhu C. Preparation of pyramidal SnO/CeO2 nano-heterojunctions with enhanced photocatalytic activity for degradation of tetracycline[J]. Nanotechnology, 2020,31(21)215702. doi: 10.1088/1361-6528/ab73b4

    8. [8]

      Dong Z, Wang Y, Wen D, Peng J, Zhao L, Zhai M L. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review[J]. J. Hazard. Mater., 2022,424126887. doi: 10.1016/j.jhazmat.2021.126887

    9. [9]

      Fang M M, Shao J X, Huang X G, Wang J Y, Chen W. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation[J]. J. Mater. Sci. Technol., 2020,56:133-142. doi: 10.1016/j.jmst.2020.01.054

    10. [10]

      Mustafa G, Zahid M T, Kurade M B, Alvi A, Ullah F, Yadav N, Park H K, Khan M A, Jeon B H. Microalgal and activated sludge processing for biodegradation of textile dyes[J]. Environ. Pollut., 2024,349123902. doi: 10.1016/j.envpol.2024.123902

    11. [11]

      Baldisserri C, Ortelli S, Blosi M, Costa A L. Pilot-plant study for the photocatalytic/electrochemical degradation of rhodamine B[J]. J. Environ. Chem. Eng., 2018,6(2):1794-1804. doi: 10.1016/j.jece.2018.02.008

    12. [12]

      Xu T, Fu L Y, Lu H Y, Zhang M Y, Wang W L, Hu B N, Zhou Y H, Yu G. Electrochemical oxidation degradation of rhodamine B dye on boron-doped diamond electrode: Input mode of power attenuation[J]. J. Clean. Prod., 2023,401136794. doi: 10.1016/j.jclepro.2023.136794

    13. [13]

      Zhao X, Hu G Z, Tan F, Zhang S S, Wang X Z, Hu X, Kuklin A V, Baryshnikov G V, Ågren H, Zhou X H, Zhang H B. Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water[J]. J. Mater. Chem. A, 2021,9(41):23675-23686. doi: 10.1039/D1TA05718A

    14. [14]

      Hang Z S, Yu H L, Luo L P, Huai X. Nanoporous g-C3N4/MOF: High-performance photoinitiator for UV-curable coating[J]. J. Mater. Sci., 2019,54(22):13959-13972. doi: 10.1007/s10853-019-03896-9

    15. [15]

      Chen W, Chang L, Ren S B, He Z C, Huang G B, Liu X H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal[J]. J. Hazard. Mater., 2020,384121308. doi: 10.1016/j.jhazmat.2019.121308

    16. [16]

      Li R, Qiu L P, Cao S Z, Li Z, Gao S L, Zhang J, Ramakrishna S, Long Y Z. Research advances in magnetic field-assisted photocatalysis[J]. Adv. Funct. Mater., 2024,32316725.

    17. [17]

      Fang M M, Shao J X, Huang X G, Wang J Y, Chen W. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation[J]. J. Mater. Sci. Technol., 2020,56:133-142. doi: 10.1016/j.jmst.2020.01.054

    18. [18]

      Zhu Q H, Zhang K, Li D Q, Li N, Xu J K, Bahnemann D W, Wang C Y. Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review[J]. Chem. Eng. J., 2021,426131681. doi: 10.1016/j.cej.2021.131681

    19. [19]

      Li Y X, Li S Q, Meng L H, Peng S Q. Synthesis of oriented J type ZnIn2S4@CdIn2S4 heterojunction by controllable cation exchange for enhancing photocatalytic hydrogen evolution[J]. J. Colloid Interface Sci., 2023,650:266-274. doi: 10.1016/j.jcis.2023.06.185

    20. [20]

      Li Y X, Han P, Hou Y L, Pleng S Q, Kuang X J. Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2018,244:604-611.

    21. [21]

      Li Y X, Hou Y L, Fu Q Y, Peng S Q, Hu Y H. Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production[J]. Appl. Catal. B-Environ., 2017,206:726-733. doi: 10.1016/j.apcatb.2017.01.062

    22. [22]

      Meng X Y, Wang S Y, Zhang C C, Dong C Z, Li R, Li B, Wang Q, Ding Y. Boosting hydrogen evolution performance of a CdS-based photocatalyst: In situ transition from type Ⅰ to type Ⅱ heterojunction during photocatalysis[J]. ACS Catal., 2022,12(16):10115-10126. doi: 10.1021/acscatal.2c01877

    23. [23]

      Lv J X, Zhang Z M, Wang J, Lu X L, Zhang W, Lu T B. In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production[J]. ACS Appl. Mater. Interfaces, 2018,11(3):2655-2661.

    24. [24]

      Li C H, Wang H M, Naghadeh S B, Zhang J Z, Fang P F. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures[J]. Appl. Catal. B-Environ., 2018,227:229-239. doi: 10.1016/j.apcatb.2018.01.038

    25. [25]

      Li X H, Su Z Q, Jiang H Q, Liu J Q, Zheng L X, Zheng H J, Wu S T, Shi X W. Band structure tuning via Pt single atom induced rapid hydroxyl radical generation toward efficient photocatalytic reforming of lignocellulose into H2[J]. Small, 20242400617.

    26. [26]

      Xiang X L, Zhang L Y, Luo C, Zhang J J, Cheng B, Liang G J, Zhang Z Y, Yu J G. Ultrafast electron transfer from CdS quantum dots to atomically-dispersed Pt for enhanced H2 evolution and value-added chemical synthesis[J]. Appl. Catal. B-Environ., 2024,340123196. doi: 10.1016/j.apcatb.2023.123196

    27. [27]

      Mou Z, Xu J L, Meng T T, Wang X P, Gao R X, Guo J J, Gu S W, Zhou Z P, Meng W, Zhang K J. Carbon nanotubes as electron mediators for CNTs/CdS/MoS2 high efficient photodegradation of tetracycline under visible light[J]. J. Alloy. Compd., 2023,967171699. doi: 10.1016/j.jallcom.2023.171699

    28. [28]

      Li N X, Huang H L, Bibi R, Shen Q H, Ngulube R, Zhou J C, Liu M C. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2019,476:378-386. doi: 10.1016/j.apsusc.2019.01.105

    29. [29]

      Marder A A, Cassidy J, Harankahage D, Beavon J, Gutiérrez-Arzaluz L, Mohammed O F, Mishra A, Adams A C, Slinker J D, Hu Z J, Savoy S, Zamkov M, Malko A V. CdS/CdSe/CdS spherical quantum wells with near-unity biexciton quantum yield for light-emitting-device applications[J]. ACS Mater. Lett., 2023,5(5):1411-1419. doi: 10.1021/acsmaterialslett.3c00110

    30. [30]

      Lie J S, Luo F L, Liu Y F, Yang Y X, Nie Q L, Chen X C, You R Y, Liu Y Z, Xiao X F, Lu Y D. Recyclable magnetic nanoparticles combined with TiO2 enrichment and "off" to "on" SERS assay for sensitive detection of alkaline phosphatase[J]. Chem. Eng. J., 2024,479147241. doi: 10.1016/j.cej.2023.147241

    31. [31]

      XU Y, YANG H G, NIU H B, TIAN H L, PIAO H G, HUANG Y P, FANG Y F. Preparation mechanism and application of alcohol-modified Fe3O4 magnetic nanoparticles[J]. Chem. J. Chinese Universities, 2021,42(8):2564-2573.

    32. [32]

      Peng Q, Ma M, Chen S, Shi Y Q, He H W, Wang X. Magnetic-conductive bi-gradient structure design of CP/PGFF/Fe3O4 composites for highly absorbed EMI shielding and balanced mechanical strength[J]. J. Mater. Sci. Technol., 2023,133:102-110. doi: 10.1016/j.jmst.2022.05.057

    33. [33]

      Alexpandi R, Abirami G, Murugesan B, Durgadevi R, Swasthikka R P, Cai Y R, Ragupathi T, Ravi A V. Tocopherol-assisted magnetic Ag-Fe3O4-TiO2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model[J]. J. Hazard. Mater., 2023,442130044. doi: 10.1016/j.jhazmat.2022.130044

    34. [34]

      Zhao Y Y, Tang Q W, He B L, Yang P Z. Mo incorporated W18O49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution[J]. Int. J. Hydrog. Energy, 2017,42(21):14534-14546. doi: 10.1016/j.ijhydene.2017.04.115

    35. [35]

      Zhu B L, Lin B Z, Zhou Y, Sun P, Yao Q R, Chen Y L, Gao B F. Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts[J]. J. Mater. Chem. A, 2014,2(11):3819-3827. doi: 10.1039/C3TA14819J

    36. [36]

      Lebedev A I, Saidzhonov B M, Drozdov K A, Khomich A A, Vasiliev R B. Raman and infrared studies of CdSe/CdS core/shell nanoplatelets[J]. J. Phys. Chem. C, 2021,125(12):6758-6766. doi: 10.1021/acs.jpcc.0c10529

    37. [37]

      Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet J F, Cohen-Jonathan S, Souce M, Marchais H, Dubois P. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy[J]. Analyst, 2005,130(10)1395. doi: 10.1039/b419004a

    38. [38]

      Feng L P, Wang J H, Zhang L X, Li J D, Zhang Y F, Xu M H, Tang P S, Wang H. Construction of direct Z-scheme Co9S8/CdS with tubular heterostructure through the simultaneous immobilization and in-situ reduction strategy for enhanced photocatalytic Cr(Ⅵ) reduction under visible light[J]. J. Colloid Interface Sci., 2024,675:535-548. doi: 10.1016/j.jcis.2024.07.030

    39. [39]

      Duan F, Sheng J L, Shi S H, Li Y J, Liu W H, Lu S L, Zhu H, Du M L, Chen X, Wang J. Protonated Z-scheme CdS-covalent organic framework heterojunction with highly efficient photocatalytic hydrogen evolution[J]. J. Colloid Interface Sci., 2024,675:620-629. doi: 10.1016/j.jcis.2024.07.051

    40. [40]

      Hu T, Liu N B, Bu H T, Hu J H, Zhu Q S, Tang S P, Li Y T, Wang J J, Jiang B G. Self-separating core-shell spheres with a carboxymethyl chitosan/acrylic acid/Fe3O4 composite core for soil Cd removal[J]. Carbohydr. Polym., 2024,343122428. doi: 10.1016/j.carbpol.2024.122428

    41. [41]

      Cui T, Chi J Q, Liu K, Zhu J W, Guo L L, Mao H M, Liu X B, Lai J P, Guo H L, Wang L. Manipulating the electron redistribution of Fe3O4 for anion exchange membrane based alkaline seawater electrolysis[J]. Appl. Catal. B-Environ., 2024,357124269. doi: 10.1016/j.apcatb.2024.124269

    42. [42]

      Li S Q, Peng S Q, Li Y X. Constructing an open-structured J-type ZnIn2S4/In(OH)3 heterojunction for photocatalytical hydrogen generation[J]. J. Phys. Chem. Lett., 2024,15(19):5215-5222. doi: 10.1021/acs.jpclett.4c00835

    43. [43]

      Gao H Z, Wang H G, Jin Y L, Lv J, Xu G Q, Wang D M, Zhang X Y, Chen Z, Zheng Z X, Wu Y C. Controllable fabrication of immobilized ternary CdS/Pt-TiO2 heteronanostructures toward high-performance visible-light driven photocatalysis[J]. Phys. Chem. Chem. Phys., 2015,17(27):17755-17761. doi: 10.1039/C5CP01128K

    44. [44]

      Zhu Z, Huo P W, Lu Z Y, Yan Y S, Liu Z, Shi W D, Li C X, Dong H J. Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator[J]. Chem. Eng. J., 2018,331:615-625. doi: 10.1016/j.cej.2017.08.131

    45. [45]

      Cheng L, Xiang Q J, Liao Y L, Zhang H W. CdS-based photocatalysts[J]. Energy Environ. Sci., 2018,11(6):1362-1391. doi: 10.1039/C7EE03640J

  • 加载中
    1. [1]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    7. [7]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    8. [8]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    13. [13]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    17. [17]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    18. [18]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    19. [19]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    20. [20]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

Metrics
  • PDF Downloads(2)
  • Abstract views(429)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return