Citation: Jie XIE, Hongnan XU, Jianfeng LIAO, Ruoyu CHEN, Lin SUN, Zhong JIN. Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216 shu

Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage

Figures(6)

  • A 3D nitrogen-doped graphene/multi-walled carbon nanotube (CS-GO-NCNT) crosslinked network material was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources, concomitant with the incorporation of multi-wall carbon nanotubes and employing freeze drying technology. The material amalgamates the merits of 1D/2D hybrid carbon materials, wherein 1D carbon nanotubes confer robustness and expedited electron transport pathways, while 2D graphene sheets facilitate rapid ion migration. Furthermore, the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage. When served as an anode material for lithium-ion batteries, the CS-GO-NCNT electrode delivered a reversible capacity surpassing 500 mAh·g-1, markedly outperforming commercial graphite anodes. Even after 300 cycles at a high current density of 1 A·g-1, it remained a reversible capacity of up to 268 mAh·g-1.
  • 加载中
    1. [1]

      Wang T Y, Su D W, Shanmukaraj D, Rojo T, Armand M, Wang G X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms[J]. Electrochem. Energy Rev., 2018,1(2):200-237. doi: 10.1007/s41918-018-0009-9

    2. [2]

      Nayak P K, Yang L T, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew. Chem. Int. Ed., 2018,57(1):102-120. doi: 10.1002/anie.201703772

    3. [3]

      Grey C P, Hall D S. Prospects for lithium-ion batteries and beyond—A 2030 vision[J]. Nat. Commun., 2020,11(1)6279. doi: 10.1038/s41467-020-19991-4

    4. [4]

      Manthiram A. An outlook on lithium ion battery technology[J]. ACS Cent. Sci., 2017,3(10):1063-1069. doi: 10.1021/acscentsci.7b00288

    5. [5]

      Pomerantseva E, Bonaccorso F, Feng X L, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials[J]. Science, 2019,366(6468)eaan8285. doi: 10.1126/science.aan8285

    6. [6]

      Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018,30(33)1800561. doi: 10.1002/adma.201800561

    7. [7]

      Luo J W, Zhang J C, Guo Z X, Liu Z D, Dou S M, Liu W D, Chen Y N, Hu W B. Recycle spent graphite to defect-engineered, high-power graphite anode[J]. Nano Res., 2023,16(4):4240-4245. doi: 10.1007/s12274-022-5244-z

    8. [8]

      Li Y, Tian X D, Song Y, Yang T, Wu S J, Liu Z J. Preparation and lithium storage of anthracite-based graphite anode materials[J]. New Carbon Mater., 2022,37(6):1163-1169. doi: 10.1016/S1872-5805(21)60057-4

    9. [9]

      Xiao X W, Wang Z Q, Yao W L, Rao X F, Zhang Q, Zhong S W, Yan Z Q. Nano Sn-SnOx embedded in multichannel hollow carbon nanofibers: microstructure, reversible lithium storage property and mechanism[J]. Appl. Surf. Sci., 2023,635157739. doi: 10.1016/j.apsusc.2023.157739

    10. [10]

      Xiao X W, Yao W L, Yan T T, Zhang W Y, Zhang Q, Zhong S W, Yan Z Q. Hybrid CuSn nanosphere-functionalized Cu/Sn co-doped hollow carbon nanofibers as anode materials for sodium-ion batteries[J]. Nanoscale, 2023,15(37):15405-15414. doi: 10.1039/D3NR02414H

    11. [11]

      Tang Y H, Wang X, Chen J J, Wang X X, Wang D J, Mao Z Y. PVP-assisted synthesis of g-C3N4-derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes[J]. Carbon, 2021,174:98-109. doi: 10.1016/j.carbon.2020.12.010

    12. [12]

      Zhu S, Zhang F, Lu H G, Sheng J, Wang L N, Li S D, Han G Y, Li Y. Flash nitrogen-doped graphene for high-rate supercapacitors[J]. ACS Mater. Lett., 2022,4(10):1863-1871. doi: 10.1021/acsmaterialslett.2c00616

    13. [13]

      Mo R W, Rooney D, Sun K N, Yang H Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery[J]. Nat. Commun., 2017,8(1)13949. doi: 10.1038/ncomms13949

    14. [14]

      Xie Q X, Qu S P, Zhang Y F, Zhao P. Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries[J]. Appl. Surf. Sci., 2021,537148092. doi: 10.1016/j.apsusc.2020.148092

    15. [15]

      Ahmad S, Copic D, George C, De Volder M. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries[J]. Adv. Mater., 2016,28(31):6705-6710. doi: 10.1002/adma.201600914

    16. [16]

      Ning G Q, Zhang S C, Xiao Z H, Wang H B, Ma X L. Efficient conducting networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes[J]. Carbon, 2018,132:323-328. doi: 10.1016/j.carbon.2018.02.056

    17. [17]

      Zhao L, Ning G Q, Zhang S C. Green synthesis of S-doped carbon nanotubes via gaseous post-treatment and their application as conductive additive in Li ion batteries[J]. Carbon, 2021,179:425-434. doi: 10.1016/j.carbon.2021.04.067

    18. [18]

      Jiang L, Jiang Q, Liu Q Q, Peng J Q, Gao Y K, Duan Z H, Hu A L, Lu X Y. Preparation of CNT/RGO macroscopic body by partially stripping CNT and its energy storage performances[J]. Diam. Relat. Mater., 2018,88:1-5. doi: 10.1016/j.diamond.2018.06.020

    19. [19]

      Kou L J, Wang Y, Song J J. Reduced graphene oxide nanosheets decorated carbon-coated NH4V3O8 as cathode materials with superior cycle stabilities for lithium-ion batteries[J]. Appl. Phys. A, 2021,128(1)14.

    20. [20]

      Gao H L, Zhu Y B, Mao L B, Wang F C, Luo X S, Liu Y Y, Lu Y, Pan Z, Ge J, Shen W, Zheng Y R, Xu L, Wang L J, Xu W H, Wu H A, Yu S H. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure[J]. Nat. Commun., 2016,7(1)12920. doi: 10.1038/ncomms12920

    21. [21]

      Kumar R, Sahajwalla V, Bhargava P. Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2-methyl-8-hydroxyquinolinol (Mq)[J]. Nanoscale Adv., 2019,1(8):3192-3199. doi: 10.1039/C9NA00206E

    22. [22]

      Kumar R, Singh B K, Soam A, Parida S, Bhargava P. In-situ carbon coated manganese oxide nanorods (ISCC-MnO2NRs) as an electrode material for supercapacitors[J]. Diam. Relat. Mater., 2019,94:110-117. doi: 10.1016/j.diamond.2019.03.003

    23. [23]

      Yang W X, Liu X J, Yue X Y, Jia J B, Guo S J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. J. Am. Chem. Soc., 2015,137(4):1436-1439. doi: 10.1021/ja5129132

    24. [24]

      Ilnicka A, Lukaszewicz J P. Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3[J]. Mater. Sci. Eng. B, 2015,201:66-71. doi: 10.1016/j.mseb.2015.08.002

    25. [25]

      Niu J, Shao R, Liang J J, Dou M L, Li Z L, Huang Y Q, Wang F. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy, 2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042

    26. [26]

      Qian W J, Sun F X, Xu Y H, Qiu L H, Liu C H, Wang S D, Yan F. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy Environ. Sci., 2014,7(1):379-386. doi: 10.1039/C3EE43111H

    27. [27]

      Reitz C, Breitung B, Schneider A, Wang D, von der Lehr M, Leichtweiss T, Janek J, Hahn H, Brezesinski T. Hierarchical carbon with high nitrogen doping level: A versatile anode and cathode host material for long-life lithium-ion and lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(16):10274-10282. doi: 10.1021/acsami.5b12361

    28. [28]

      Ma X L, Ning G Q, Qi C L, Xu C G, Gao J S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6(16):14415-14422. doi: 10.1021/am503692g

    29. [29]

      Wang F F, Lin S, Lu X S, Hong R Y, Liu H Y. Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries[J]. Electrochim. Acta, 2022,404139708. doi: 10.1016/j.electacta.2021.139708

    30. [30]

      Hu T Y, He J, Zhang S M, Mei X, Zhang W K, Liang R Z, Wei M, Evans D G, Duan X. An ultrathin photosensitizer for simultaneous fluorescence imaging and photodynamic therapy[J]. Chem. Commun., 2018,54(45):5760-5763. doi: 10.1039/C8CC02792G

    31. [31]

      Wang L, Deng J, Deng J T, Fei Y H, Fang Y, Hu Y H. Ultra-fast and ultra-long-life Li ion batteries with 3D surface-porous graphene anodes synthesized from CO2[J]. J. Mater. Chem. A, 2020,8(26):13385-13392. doi: 10.1039/D0TA03606D

    32. [32]

      Hao R, Lan H, Kuang C W, Wang H, Guo L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers[J]. Carbon, 2018,128:224-230. doi: 10.1016/j.carbon.2017.11.064

  • 加载中
    1. [1]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    5. [5]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    11. [11]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    12. [12]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    15. [15]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    18. [18]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(4)
  • Abstract views(544)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return