Citation: Jie ZHAO, Huili ZHANG, Xiaoqing LU, Zhaojie WANG. Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213 shu

Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework

  • Corresponding author: Zhaojie WANG, wangzhaojie@upc.edu.cn
  • Received Date: 4 June 2024
    Revised Date: 13 September 2024

Figures(8)

  • By introducing polar functional groups such as —OH, —NH2, and —SO3H, two-dimensional truxenonebased covalent organic frameworks (TRO-COFs) with high surface area and imine bond connections are designed. The influence of polar functional groups on the CO2 capture performance of TRO COFs is explored using grand canonical Monte Carlo simulation (GCMC) and density functional theory (DFT) at 298 K and 0-1.0×105 Pa. Analysis of binding energy and cohesive energy indicate that the functional groups modified TRO-COFs still maintain high structural stability. The introduction of functional groups significantly enhances the CO2 adsorption performance, with the order as follows: TRO-COF-SO3H>TRO-COF-NH2>TRO-COF-OH>TRO-COF-H. Notably, TRO-COF-SO3H exhibits the highest CO2 adsorption capacity of 8.02 mmol·g-1 with a selectivity of CO2 over N2 and CH4 at 298 K and 1.0×105 Pa (37 and 26). Moreover, the different effects of functional groups on CO2 capture and separation are illustrated through the radial distribution function and adsorption density distribution. Finally, the modified mechanism of functional groups is elucidated from the heat of adsorption, van der Waals (vdW), and Coulomb interactions.
  • 加载中
    1. [1]

      GHORBANI A, RAHIMPOUR H R, GHASEMI Y, ZOUGHI S, RAHIMPOUR M R. A review of carbon capture and sequestration in Iran: Microalgal biofixation potential in Iran[J]. Renew. Sust. Energ. Rev., 2014,35:73-100. doi: 10.1016/j.rser.2014.03.013

    2. [2]

      AKADIR S S, ADEBAYO T S, NAKORJI M, MWAKAPWA W, INUSA E M, IZUCHUKWU O. Impacts of globalization and energy consumption on environmental degradation: What is the way forward to achieving environmental sustainability targets in Nigeria?[J]. Sci. Pollut. R, 2022,29:60426-60439. doi: 10.1007/s11356-022-20180-7

    3. [3]

      LIU Z, SUN W Z, HU B, HAN C J, IEROMONACHOU P, ZHAO Y J, ZHENG J Z. Research on supply chain optimization considering consumer subsidy mechanism in the context of carbon neutrality[J]. Energies, 2023,16(7)3147. doi: 10.3390/en16073147

    4. [4]

      LUO W, WANG C Z, JIN M H, LI H, ZHANG Z X, ZHANG X, LIANG Y Q, HUANG G X, ZHOU T. Research progress on nanoconfined ILs in two-dimensional composite membranes for CO2 capture[J]. Sep. Purif. Technol., 2024,330125406. doi: 10.1016/j.seppur.2023.125406

    5. [5]

      GUNAWARDENE O H P, GUNATHILAKE C A, VIKRANT K, AMARAWEERA S M. Carbon dioxide capture through physical and chemical adsorption using porous carbon materials: A review[J]. Atmosphere, 2022,13(3)397. doi: 10.3390/atmos13030397

    6. [6]

      WANG Z F, ZHU Q Q, WANG J X, JIN F Z, ZHANG P H, DONG Y, CHENG P, CHEN Y, ZHANG Z J. Industry-compatible covalent organic frameworks for greenchemical engineering[J]. Sci. China Chem., 2022,65:2144-2162. doi: 10.1007/s11426-022-1391-0

    7. [7]

      ZHANG W H, YANG X B, ZHAI L P, CHEN Z F, SUN Q K, LUO X L, WAN J Q, NIE R M, LI Z P. Microporous and stable covalent organic framework for effective gas uptake[J]. Mater. Lett., 2021,304130657. doi: 10.1016/j.matlet.2021.130657

    8. [8]

      LI X D, YANG P H, HUANG X Y, LIU X Y, YU J X, CHEN Z. Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks[J]. Mater. Today Commun., 2022,33104374. doi: 10.1016/j.mtcomm.2022.104374

    9. [9]

      LIU S, WANG M H, WEI S X, LIU S Y, WANG Z J, WU C M L, SUN D F, LU X Q. Enhanced CO2 capture in partially interpenetrated MOFs: Synergistic effects from functional group, pore size, and steric-hindrance[J]. J. Colloid Interf. Sci., 2023,650:1361-1370. doi: 10.1016/j.jcis.2023.07.058

    10. [10]

      LU X Q, ZHANG H L, LIU S, WANG L, ZHANG L, WANG M H, WANG Z J, LIU S Y, WEI S X. Efficient CO2 capture and separation in TpPa COFs: Synergies from functional groups and metal Li[J]. Sep. Purif. Technol., 2024,342127036. doi: 10.1016/j.seppur.2024.127036

    11. [11]

      SINGH G, NAGARAJA C M. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks[J]. J. CO2 Util., 2021,53101716. doi: 10.1016/j.jcou.2021.101716

    12. [12]

      ZENG H W, LIU Y, LIU H L. Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: An MC/MD simulation study[J]. Mol. Simulat., 2018,44:1244-1251. doi: 10.1080/08927022.2018.1481959

    13. [13]

      LIU M J, LIU J N, LI J, ZHAO Z H, ZHOU K, LI Y M, HE P P, WU J S, BAO Z B, YANG Q W, YANG Y W, REN Q L, ZHANG Z G. Blending aryl ketone in covalent organic frameworks to promote photoinduced electron transfer[J]. J. Am. Chem. Soc., 2023,145(16):9198-9206. doi: 10.1021/jacs.3c01273

    14. [14]

      YAN H W, NIE B S, PENG C, LIU P J, WANG X T, YIN F F, GONG J, WEI Y Y, LIN S S. Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio[J]. Energy Fuels, 2021,35(21):17602-17616. doi: 10.1021/acs.energyfuels.1c02658

    15. [15]

      YI W C, TANG G, CHEN X, YANG B C, LIU X B. Qvasp: A flexible toolkit for VASP users in materials simulations[J]. Comput. Phys. Commun., 2020,257107535. doi: 10.1016/j.cpc.2020.107535

    16. [16]

      LI J, FAN X Z, CHEN J J, SHI G S, LIU X. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations[J]. J. Mol. Model., 2024,3072. doi: 10.1007/s00894-024-05872-w

    17. [17]

      BIJOY T K, MURUGAN P, KUMAR V. Atomic and electronic structure of solids of Ge2Br2PN, Ge2I2PN, Sn2Cl2PN, Sn2Br2PN and Sn2I2PN inorganic double helices: A first principles study[J]. RSC Adv., 2020,1014714. doi: 10.1039/D0RA02007A

    18. [18]

      LEVKOVICH O, YARDEN A. Conceptualizing learning about proteins with a molecular viewer in high school based on the integration of two theoretical frameworks[J]. Biochem. Mol. Biol. Educ., 2021,49(6):917-925. doi: 10.1002/bmb.21576

    19. [19]

      ZHANG Y Y, LIU C, HAO F, XIAO H, ZHANG S W, CHEN X. CO2 adsorption and separation from natural gas on phosphorene surface: Combining DFT and GCMC calculations[J]. Appl. Surf. Sci., 2017,397:206-212. doi: 10.1016/j.apsusc.2016.11.117

    20. [20]

      WU Z H, WEI S X, WANG M H, ZHOU S N, WANG J H, WANG Z J, GUO W Y, LU X Q. CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations[J]. J. CO2 Util., 2018,28:145-151. doi: 10.1016/j.jcou.2018.09.024

    21. [21]

      BAZOOYAR F, MOMANY F A, BOLTON K. Validating empirical force fields for molecular-level simulation of cellulose dissolution[J]. Comput. Theor. Chem., 2012,984:119-127. doi: 10.1016/j.comptc.2012.01.020

    22. [22]

      SEAL A, TIWARI U, GUPTA A, RAJAN A G. Incorporating ion-specific van der Waals and soft repulsive interactions in the Poisson-Boltzmann theory of electrical double layers[J]. Phys. Chem. Chem. Phys., 2023,2521708. doi: 10.1039/D3CP00745F

    23. [23]

      PETER C, GUNSTEREN W F V, HÜNENBERGER P H. A fast- Fourier transform method to solve continuum-electrostatics problems with truncated electrostatic interactions: Algorithm and application to ionic solvation and ion-ion interaction[J]. J. Chem. Phys., 2003,119:12205-12223. doi: 10.1063/1.1624054

    24. [24]

      MERT H, DENIZ C U, BAYKASOGLU C. Adsorptive separation of CH4, H2, CO2, and N2 using fullerene pillared graphene nanocomposites: Insights from molecular simulations[J]. J. Mol. Model., 2023,29315. doi: 10.1007/s00894-023-05715-0

    25. [25]

      ZHANG H L, LIU S, WANG L, FANG H X, YUE X K, WANG Z J, WEI S X, LIU S Y, LU X Q. Ultrahigh performance CO2 capture and separation in alkali metal anchored 2D-COF[J]. Sep. Purif. Technol., 2024,333125937. doi: 10.1016/j.seppur.2023.125937

    26. [26]

      ZHOU S N, WANG M H, WEI S X, XIN H L, ZHAI W R, XU S Y, LIU S, LIU S Y, WU C M L, LU X Q. Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4[J]. Mat. Today Phys., 2021,21100539. doi: 10.1016/j.mtphys.2021.100539

    27. [27]

      TANG C, ZHANG X, ZHOU X F. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: Applying external biaxial strain and an electric field[J]. Phys. Chem. Chem. Phys., 2017,19:5570-5578. doi: 10.1039/C6CP07433B

    28. [28]

      MOGHADAM B B, SADEGHI E, ROSTAMI A A, FAZLI S. Chemisorption and physisorption studies of carbonyl fluoride and carbon disulfide on C19X (X=Zn, Co and Sc) nanocage by DFT-based calculation[J]. Mater. Today Commun., 2023,35106162. doi: 10.1016/j.mtcomm.2023.106162

    29. [29]

      SARKISOV L, HARRISON A. Computational structure characterisation tools in application to ordered and disordered porous materials[J]. Mol. Simulat., 2011,37(15):1248-1257. doi: 10.1080/08927022.2011.592832

    30. [30]

      DUBBELDAM D, CALERO S, VLUGT T J H. IRASPA: GPU-accelerated visualization software for materials scientists[J]. Mol. Simulat., 2018,44(8):653-676. doi: 10.1080/08927022.2018.1426855

    31. [31]

      LI X D, SU Q, LUO K X, LI HE, LI G H, WU Q L. Construction of a highly heteroatom-functionalized covalent organic framework and its CO2 capture capacity and CO2/N2 selectivity[J]. Mater. Lett., 2021,282128704. doi: 10.1016/j.matlet.2020.128704

    32. [32]

      SHI S, LIU Y X. Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption[J]. Fuel, 2021,306121762. doi: 10.1016/j.fuel.2021.121762

    33. [33]

      ZHAO G D, LI Z L, CHENG B W, ZHUANG X P, LIN T. Hierarchical porous metal organic framework aerogel for highly efficient CO2 adsorption[J]. Sep. Purif. Technol., 2023,315125937.

    34. [34]

      SARMAH K, PURKAYASTHA S K, KALITA A J, GUHA A K. An in silico study of the selective adsorption and separation of CO2 from a flue gas mixture (CH4, CO2, N2) by ZnLi5+ clusters[J]. Phys. Chem. Chem. Phys., 2023,25:5174-5182. doi: 10.1039/D2CP05838C

    35. [35]

      PARK J, CHO S Y, JUNG M J, LEE K, NAH Y, ATTIA N F, OH H. Efficient synthetic approach for nanoporous adsorbents capable of pre- and post-combustion CO2 capture and selective gas separation[J]. J. CO2 Util., 2021,45101404. doi: 10.1016/j.jcou.2020.101404

    36. [36]

      YANG K, GUO J W. Three-dimensional nanoporous organic frameworks based on rigid unites[J]. Mater. Lett., 2019,236:155-158. doi: 10.1016/j.matlet.2018.10.051

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(4)
  • Abstract views(561)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return