Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework
- Corresponding author: Zhaojie WANG, wangzhaojie@upc.edu.cn
Citation:
Jie ZHAO, Huili ZHANG, Xiaoqing LU, Zhaojie WANG. Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(2): 275-283.
doi:
10.11862/CJIC.20240213
GHORBANI A, RAHIMPOUR H R, GHASEMI Y, ZOUGHI S, RAHIMPOUR M R. A review of carbon capture and sequestration in Iran: Microalgal biofixation potential in Iran[J]. Renew. Sust. Energ. Rev., 2014,35:73-100. doi: 10.1016/j.rser.2014.03.013
AKADIR S S, ADEBAYO T S, NAKORJI M, MWAKAPWA W, INUSA E M, IZUCHUKWU O. Impacts of globalization and energy consumption on environmental degradation: What is the way forward to achieving environmental sustainability targets in Nigeria?[J]. Sci. Pollut. R, 2022,29:60426-60439. doi: 10.1007/s11356-022-20180-7
LIU Z, SUN W Z, HU B, HAN C J, IEROMONACHOU P, ZHAO Y J, ZHENG J Z. Research on supply chain optimization considering consumer subsidy mechanism in the context of carbon neutrality[J]. Energies, 2023,16(7)3147. doi: 10.3390/en16073147
LUO W, WANG C Z, JIN M H, LI H, ZHANG Z X, ZHANG X, LIANG Y Q, HUANG G X, ZHOU T. Research progress on nanoconfined ILs in two-dimensional composite membranes for CO2 capture[J]. Sep. Purif. Technol., 2024,330125406. doi: 10.1016/j.seppur.2023.125406
GUNAWARDENE O H P, GUNATHILAKE C A, VIKRANT K, AMARAWEERA S M. Carbon dioxide capture through physical and chemical adsorption using porous carbon materials: A review[J]. Atmosphere, 2022,13(3)397. doi: 10.3390/atmos13030397
WANG Z F, ZHU Q Q, WANG J X, JIN F Z, ZHANG P H, DONG Y, CHENG P, CHEN Y, ZHANG Z J. Industry-compatible covalent organic frameworks for greenchemical engineering[J]. Sci. China Chem., 2022,65:2144-2162. doi: 10.1007/s11426-022-1391-0
ZHANG W H, YANG X B, ZHAI L P, CHEN Z F, SUN Q K, LUO X L, WAN J Q, NIE R M, LI Z P. Microporous and stable covalent organic framework for effective gas uptake[J]. Mater. Lett., 2021,304130657. doi: 10.1016/j.matlet.2021.130657
LI X D, YANG P H, HUANG X Y, LIU X Y, YU J X, CHEN Z. Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks[J]. Mater. Today Commun., 2022,33104374. doi: 10.1016/j.mtcomm.2022.104374
LIU S, WANG M H, WEI S X, LIU S Y, WANG Z J, WU C M L, SUN D F, LU X Q. Enhanced CO2 capture in partially interpenetrated MOFs: Synergistic effects from functional group, pore size, and steric-hindrance[J]. J. Colloid Interf. Sci., 2023,650:1361-1370. doi: 10.1016/j.jcis.2023.07.058
LU X Q, ZHANG H L, LIU S, WANG L, ZHANG L, WANG M H, WANG Z J, LIU S Y, WEI S X. Efficient CO2 capture and separation in TpPa COFs: Synergies from functional groups and metal Li[J]. Sep. Purif. Technol., 2024,342127036. doi: 10.1016/j.seppur.2024.127036
SINGH G, NAGARAJA C M. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks[J]. J. CO2 Util., 2021,53101716. doi: 10.1016/j.jcou.2021.101716
ZENG H W, LIU Y, LIU H L. Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: An MC/MD simulation study[J]. Mol. Simulat., 2018,44:1244-1251. doi: 10.1080/08927022.2018.1481959
LIU M J, LIU J N, LI J, ZHAO Z H, ZHOU K, LI Y M, HE P P, WU J S, BAO Z B, YANG Q W, YANG Y W, REN Q L, ZHANG Z G. Blending aryl ketone in covalent organic frameworks to promote photoinduced electron transfer[J]. J. Am. Chem. Soc., 2023,145(16):9198-9206. doi: 10.1021/jacs.3c01273
YAN H W, NIE B S, PENG C, LIU P J, WANG X T, YIN F F, GONG J, WEI Y Y, LIN S S. Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio[J]. Energy Fuels, 2021,35(21):17602-17616. doi: 10.1021/acs.energyfuels.1c02658
YI W C, TANG G, CHEN X, YANG B C, LIU X B. Qvasp: A flexible toolkit for VASP users in materials simulations[J]. Comput. Phys. Commun., 2020,257107535. doi: 10.1016/j.cpc.2020.107535
LI J, FAN X Z, CHEN J J, SHI G S, LIU X. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations[J]. J. Mol. Model., 2024,3072. doi: 10.1007/s00894-024-05872-w
BIJOY T K, MURUGAN P, KUMAR V. Atomic and electronic structure of solids of Ge2Br2PN, Ge2I2PN, Sn2Cl2PN, Sn2Br2PN and Sn2I2PN inorganic double helices: A first principles study[J]. RSC Adv., 2020,1014714. doi: 10.1039/D0RA02007A
LEVKOVICH O, YARDEN A. Conceptualizing learning about proteins with a molecular viewer in high school based on the integration of two theoretical frameworks[J]. Biochem. Mol. Biol. Educ., 2021,49(6):917-925. doi: 10.1002/bmb.21576
ZHANG Y Y, LIU C, HAO F, XIAO H, ZHANG S W, CHEN X. CO2 adsorption and separation from natural gas on phosphorene surface: Combining DFT and GCMC calculations[J]. Appl. Surf. Sci., 2017,397:206-212. doi: 10.1016/j.apsusc.2016.11.117
WU Z H, WEI S X, WANG M H, ZHOU S N, WANG J H, WANG Z J, GUO W Y, LU X Q. CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations[J]. J. CO2 Util., 2018,28:145-151. doi: 10.1016/j.jcou.2018.09.024
BAZOOYAR F, MOMANY F A, BOLTON K. Validating empirical force fields for molecular-level simulation of cellulose dissolution[J]. Comput. Theor. Chem., 2012,984:119-127. doi: 10.1016/j.comptc.2012.01.020
SEAL A, TIWARI U, GUPTA A, RAJAN A G. Incorporating ion-specific van der Waals and soft repulsive interactions in the Poisson-Boltzmann theory of electrical double layers[J]. Phys. Chem. Chem. Phys., 2023,2521708. doi: 10.1039/D3CP00745F
PETER C, GUNSTEREN W F V, HÜNENBERGER P H. A fast- Fourier transform method to solve continuum-electrostatics problems with truncated electrostatic interactions: Algorithm and application to ionic solvation and ion-ion interaction[J]. J. Chem. Phys., 2003,119:12205-12223. doi: 10.1063/1.1624054
MERT H, DENIZ C U, BAYKASOGLU C. Adsorptive separation of CH4, H2, CO2, and N2 using fullerene pillared graphene nanocomposites: Insights from molecular simulations[J]. J. Mol. Model., 2023,29315. doi: 10.1007/s00894-023-05715-0
ZHANG H L, LIU S, WANG L, FANG H X, YUE X K, WANG Z J, WEI S X, LIU S Y, LU X Q. Ultrahigh performance CO2 capture and separation in alkali metal anchored 2D-COF[J]. Sep. Purif. Technol., 2024,333125937. doi: 10.1016/j.seppur.2023.125937
ZHOU S N, WANG M H, WEI S X, XIN H L, ZHAI W R, XU S Y, LIU S, LIU S Y, WU C M L, LU X Q. Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4[J]. Mat. Today Phys., 2021,21100539. doi: 10.1016/j.mtphys.2021.100539
TANG C, ZHANG X, ZHOU X F. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: Applying external biaxial strain and an electric field[J]. Phys. Chem. Chem. Phys., 2017,19:5570-5578. doi: 10.1039/C6CP07433B
MOGHADAM B B, SADEGHI E, ROSTAMI A A, FAZLI S. Chemisorption and physisorption studies of carbonyl fluoride and carbon disulfide on C19X (X=Zn, Co and Sc) nanocage by DFT-based calculation[J]. Mater. Today Commun., 2023,35106162. doi: 10.1016/j.mtcomm.2023.106162
SARKISOV L, HARRISON A. Computational structure characterisation tools in application to ordered and disordered porous materials[J]. Mol. Simulat., 2011,37(15):1248-1257. doi: 10.1080/08927022.2011.592832
DUBBELDAM D, CALERO S, VLUGT T J H. IRASPA: GPU-accelerated visualization software for materials scientists[J]. Mol. Simulat., 2018,44(8):653-676. doi: 10.1080/08927022.2018.1426855
LI X D, SU Q, LUO K X, LI HE, LI G H, WU Q L. Construction of a highly heteroatom-functionalized covalent organic framework and its CO2 capture capacity and CO2/N2 selectivity[J]. Mater. Lett., 2021,282128704. doi: 10.1016/j.matlet.2020.128704
SHI S, LIU Y X. Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption[J]. Fuel, 2021,306121762. doi: 10.1016/j.fuel.2021.121762
ZHAO G D, LI Z L, CHENG B W, ZHUANG X P, LIN T. Hierarchical porous metal organic framework aerogel for highly efficient CO2 adsorption[J]. Sep. Purif. Technol., 2023,315125937.
SARMAH K, PURKAYASTHA S K, KALITA A J, GUHA A K. An in silico study of the selective adsorption and separation of CO2 from a flue gas mixture (CH4, CO2, N2) by ZnLi5+ clusters[J]. Phys. Chem. Chem. Phys., 2023,25:5174-5182. doi: 10.1039/D2CP05838C
PARK J, CHO S Y, JUNG M J, LEE K, NAH Y, ATTIA N F, OH H. Efficient synthetic approach for nanoporous adsorbents capable of pre- and post-combustion CO2 capture and selective gas separation[J]. J. CO2 Util., 2021,45101404. doi: 10.1016/j.jcou.2020.101404
YANG K, GUO J W. Three-dimensional nanoporous organic frameworks based on rigid unites[J]. Mater. Lett., 2019,236:155-158. doi: 10.1016/j.matlet.2018.10.051
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
ECoulomb is the Coulomb interaction energy and EvdW is the vdW interaction energy.