Citation: Xinzhe HUANG, Lihui XU, Yue YANG, Liming WANG, Zhangyong LIU, Zhongjian WANG. Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212 shu

Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr

  • Corresponding author: Lihui XU, xulh0915@163.com
  • Received Date: 4 June 2024
    Revised Date: 14 September 2024

Figures(8)

  • BiSbO4/BiOBr composites were synthesized using a two-step hydrothermal method and thoroughly characterized in their microscopic morphology, physical phase structure, chemical composition, optical properties, and photocatalytic performance. The study revealed that nanorod-structured BiSbO4 was successfully deposited onto the surface of flaky BiOBr, forming a heterojunction that not only extended the photoresponsive range of the catalyst but also improved the separation efficiency of photogenerated electron-hole pairs. The photocatalytic activity under simulated visible light exceeded that of individual BiSbO4 and BiOBr. With a BiSbO4 mass fraction of 6%, the composite exhibited optimal photocatalytic degradation of methylene blue (MB), achieving a degradation rate of 91.3% after 120 min of irradiation. Furthermore, the degradation rate remained at 77.4% after four cycles.
  • 加载中
    1. [1]

      HELMA S V, POLLITTB A, BARNETTA M A, CURRANA M A, CRAIGA Z R. Differentiating environmental concern in the context of psychological adaption to climate change[J]. Glob. Environ. Change-Human Policy Dimens., 2018,48:158-167. doi: 10.1016/j.gloenvcha.2017.11.012

    2. [2]

      SHARMA N, BHARDWAJ N K, SINGH R B P. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: A review[J]. J. Clean. Prod., 2020,256120338. doi: 10.1016/j.jclepro.2020.120338

    3. [3]

      LONG C C, JIANG Z X, SHANGGUAN J F, QING T P, ZHANG P, FENG B. Applications of carbon dots in environmental pollution control: A review[J]. Chem. Eng. J., 2021,406126848. doi: 10.1016/j.cej.2020.126848

    4. [4]

      SHARMA K, DUTTA V, SHARMA S, RAIZADA P, HOSSEINI-BANDEGHARAEI A, THAKUR P, SINGH P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review[J]. J. Ind. Eng. Chem., 2019,78:1-20. doi: 10.1016/j.jiec.2019.06.022

    5. [5]

      LIU Y L, HE J Y, QI Y, WANG Y W, LONG F, WANG M. Preparation of flower-like BiOBr/Bi2WO6 Z-scheme heterojunction through an ion exchange process with enhanced photocatalytic activity[J]. Mat. Sci. Semicon. Process, 2022,137106195. doi: 10.1016/j.mssp.2021.106195

    6. [6]

      SHARMA V K, FENG M B. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review[J]. J. Hazard. Mater., 2019,372:3-16. doi: 10.1016/j.jhazmat.2017.09.043

    7. [7]

      YANG Y, ZHAO Y X, WANG Y L, YANG S J. Study on the adsorption performance of nickel doped MIL-53(Fe) for methylene blue[J]. Industrial Water Treatment, 2023,23(11):154-160.

    8. [8]

      YANG Y, ZHANG Y L, HU H, YANG S J. Research on preparation and absorption properties of H3PMo12O40/MOF-808 composite[J]. Chemical Research and Application, 2023,35(4):862-869. doi: 10.3969/j.issn.1004-1656.2023.04.017

    9. [9]

      NATARAJAN S, BAJAJ H C, TAYADE R J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process[J]. J. Environ. Sci., 2018,65:201-222. doi: 10.1016/j.jes.2017.03.011

    10. [10]

      SIVULA K, LE FORMAL F, GRÄTZEL M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes[J]. ChemSusChem, 2011,4(4):432-449. doi: 10.1002/cssc.201000416

    11. [11]

      CAO D P, WANG J, ZHANG J B, LIU S S, XU F T, SONG X, XU X, BAO X M, GAO Z Q. Mechanism investigation of the postnecking treatment to WO3 photoelectrodes[J]. ACS Appl. Energy Mater., 2018,1(9):4670-4677. doi: 10.1021/acsaem.8b00805

    12. [12]

      ERRANDONEA D, MUÑOZ A, RODRÍGUEZ-HERNÁNDEZ P, GOMIS O, ACHARY S N, POPESCU C, PATWE S J, TYAGI A K. High-pressure crystal structure, lattice vibrations, and band structure of BiSbO 4[J]. Inorg. Chem., 2016,55(10):4958-4969. doi: 10.1021/acs.inorgchem.6b00503

    13. [13]

      LIU M, LV L, DU X M, LANG J Y, SU Y G, ZHAO Y X, WANG X J. Photo-synergistic promoted in situ generation of Bi0-BiSbO4 nano-structures as an efficient catalyst for nitrobenzene reduction[J]. RSC Adv., 2015,5:103013-103018. doi: 10.1039/C5RA20004K

    14. [14]

      ZHOU P W, ZHANG L P, DAI Y M, WU W, MAO Z P. Construction of a metallic silver nanoparticle-decorated bismuth oxybromide-based composite material as a readily recyclable photocatalyst[J]. J. Clean. Prod., 2019,246119007.

    15. [15]

      NING R S, YAN Z S, LU Z Y, WANG Q K, WU Z L, DAI W X, FAN G D, FU X Z. Photocatalytic membrane for in situ enhanced removal of semivolatile organic compounds in membrane distillation under visible light[J]. Sep. Purif. Technol., 2022,292121068. doi: 10.1016/j.seppur.2022.121068

    16. [16]

      ZUO W L, YU Y D, HUANG H. Making waves: Microbe-photocata-lyst hybrids may provide new opportunities for treating heavy metal polluted wastewater[J]. Water Res., 2021,195116984. doi: 10.1016/j.watres.2021.116984

    17. [17]

      EGORYSHEVA A V, BERSENEVA A A, KUVSHINOVA T B, GAITKO O M. Synthesis of nanocrystalline BiSbO4[J]. Russ. J. Inorg. Chem., 2017,62(9):1155-1161. doi: 10.1134/S0036023617090042

    18. [18]

      LI J, LIU X, GUO L, TUO S, YANG Y. Novel 0D/2D Ag0/BiSbO4 nanosheets with remarkably enhanced photocatalytic activity under simulated sunlight: Strong interfacial interaction, DFT calculation and degradation mechanism study[J]. Mater. Lett., 2023,338134049. doi: 10.1016/j.matlet.2023.134049

    19. [19]

      EL-BAHY S M, ARSHAD J, MUNIR S, CHAUDHARY K, ALHASHMIALAMEER D, EDDY D R, WARSI M F, SHAHID M. Improved photocatalytic performance of a new silver doped BiSbO4 photocatalyst[J]. Ceram. Int., 2022,48(16):23914-23920. doi: 10.1016/j.ceramint.2022.05.062

    20. [20]

      AJMAL A, EL SAYED M E, WARSI M F, MURSHED M N, SAMIR A, EL-BAHY Z M, MUNIR S. Synthesis, characterization and photo-catalytic activity study of aluminium doped BiSbO4 microflakes[J]. Ceram. Int., 2023,49(7):10976-10985. doi: 10.1016/j.ceramint.2022.11.292

    21. [21]

      LI J, WANG J, ZHANG G K, LI Y, WANG K. Enhanced molecular molecular oxygen activation of Ni2+-doped BiO2-x nanosheets under UV, visible and near-infrared irradiation: Mechanism and DFT study[J]. Appl. Catal. B-Environ., 2018,234:167-177. doi: 10.1016/j.apcatb.2018.04.016

    22. [22]

      ZHAN L J. Preparation and photocatalytic performance of bismuth halide oxide (BiOX) composite materials[D]. Changchun: Jilin Jianzhu University, 2023: 12-20

    23. [23]

      WANG Y M. Preparation and performance study of biobr based photocatalytic materials[D]. Lanzhou: Lanzhou University of Technology, 2023: 9-13

    24. [24]

      WANG Z W, CHEN M, HUANG D L, ZENG G M, XU P, ZHOU C Y, LAI C, WANG H, CHENG M, WANG W J. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application[J]. Chem. Eng. J., 2019,374:1025-1045. doi: 10.1016/j.cej.2019.06.018

    25. [25]

      YE Y, ZANG Z G, ZHOU T W, DONG F, LU S R, TANG X S, WEI W, ZHANG Y B. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas[J]. J. Catal., 2018,357:100-107. doi: 10.1016/j.jcat.2017.11.002

    26. [26]

      WANG Z Z, WANG K, LI Y, JIANG L S, ZHANG G K. Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling[J]. Appl. Surf. Sci., 2019,498143850. doi: 10.1016/j.apsusc.2019.143850

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    6. [6]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    7. [7]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

Metrics
  • PDF Downloads(2)
  • Abstract views(458)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return