Citation: Peng YUE, Liyao SHI, Jinglei CUI, Huirong ZHANG, Yanxia GUO. Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210 shu

Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst

  • Corresponding author: Jinglei CUI, cuijl@sxu.edu.cn
  • Received Date: 4 June 2024
    Revised Date: 15 November 2024

Figures(10)

  • A series of Ce, Mn-modified catalysts were prepared based on the V2O5/TiO2 catalyst matrix, and the structure and active components of the catalysts were analyzed using nitrogen adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The reaction activity was also explored. The results indicated that the prepared modified V2O5/TiO2 catalysts had good dispersion, and the Ce-Mn bimetalmodification improved the NH3 conversion rate and N2 selectivity of catalysts. When the loading amounts of Ce and Mn (the mass ratio of Ce or Mn to TiO2) were 8% and 6%, respectively, the NH3 conversion rate of the modified material reached 100% at 310 ℃, with an N2 selectivity of 78%. In-situ diffuse reflectance Fourier transform infrared spectroscopy characterization showed that NH3 adsorbed on the surface hydroxyl groups of the catalyst would preferentially participate in the reaction. As the temperature increased, NH3 adsorbed on the Brønsted and Lewis acid sites on the catalyst surface began to participate in the reaction, and at higher temperatures, the Lewis acid sites were the main sites for NH3 conversion.
  • 加载中
    1. [1]

      CHEN J W, ZHAO R, ZHOU R X. In-situ synthesis of Cu-SSZ-13 catalyst: Effect of crystallization time on NH3-SCR performance[J]. Chinese J. Inorg. Chem., 2018,34(12):2135-2142. doi: 10.11862/CJIC.2018.276

    2. [2]

      GAO W X, WEN J, DENG J, XU H D, CHEN Y D. Effects of hydro-thermal aging on NH3-SCR performance of Cu-modified W/CeTi catalysts[J]. Chinese J. Inorg. Chem., 2023,39(10):1877-1886. doi: 10.11862/CJIC.2023.153

    3. [3]

      SHU H, ZHANG Y H, YANG L J, LIU Y M, LI F Y, XU Q S, PAN S W. Study on the influence mechanism of SCR flue gas denitration on PM2.5 emission characteristics[J]. J. Fuel Chem. Technol., 2015,43(12):1510-1515. doi: 10.3969/j.issn.0253-2409.2015.12.016

    4. [4]

      GAO F Y, LIU Y Y, SANI Z, TANG X L, YI H H, ZHAO S Z, YU Q J, ZHOU Y S. Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms[J]. J. Environ. Chem. Eng., 2021,9(1)104575. doi: 10.1016/j.jece.2020.104575

    5. [5]

      HAN L P, CAI S X, GAO M, HASEGAWA J, WANG P L, ZHANG J P, SHI L Y, ZHANG D S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem. Rev., 2019,119(19):10916-10976. doi: 10.1021/acs.chemrev.9b00202

    6. [6]

      PÉREZ-RAMÍREZ J, KONDRATENKO E V, NOVELL-LERUTH G, RICART J M. Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory[J]. J. Catal., 2009,261(2):217-223. doi: 10.1016/j.jcat.2008.11.018

    7. [7]

      JABŁOŃSKA M, KRÓL A, KUKULSKA-ZAJAC E, TARACH K, CHMIELARZ L, GÓRA-MAREK K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen[J]. J. Catal., 2014,316:36-46. doi: 10.1016/j.jcat.2014.04.022

    8. [8]

      IL'CHENKO N I, GOLODETS G I, AVILOVA I M. Oxidation of ammonia on metals[J]. Kinet. Catal., 1975,16(6):1264-1268.

    9. [9]

      SONG D D, SHAO X Z, YUAN M L, WANG L, ZHAN W C, GUO Y L, GUO Y, LU G Z. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides[J]. RSC Adv., 2016,6(91):88117-88125. doi: 10.1039/C6RA20999H

    10. [10]

      WANG Z, QU Z P, QUAN X, LI Z, WANG H, FAN R. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Appl. Catal. B-Environ., 2013,134-135:153-166. doi: 10.1016/j.apcatb.2013.01.029

    11. [11]

      WANG Z, SUN Q, WANG D, HONG Z, QU Z P, LI X B. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen[J]. Sep. Purif. Technol., 2019,209:1016-1026. doi: 10.1016/j.seppur.2018.09.045

    12. [12]

      GANG L, GRONDELLE J V, ANDERSON B G, SANTEN R A V. Selective low temperature NH3 oxidation to N2 on copper-based catalysts[J]. J. Catal., 1999,186:100-109. doi: 10.1006/jcat.1999.2524

    13. [13]

      Lee S M, Hong S C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Appl. Catal. B-Environ., 2015,163:30-39. doi: 10.1016/j.apcatb.2014.07.043

    14. [14]

      CHEN C, XIE H D, HE P W, LIU X, YANG C, WANG N, GE C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Appl. Surf. Sci., 2022,571(4)151285.

    15. [15]

      KWON D W, LEE S M, HONG S C. Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia[J]. Appl. Catal. A-Gen., 2015,505:557-565. doi: 10.1016/j.apcata.2015.02.007

    16. [16]

      WANG L, LI G B, WU P, SHEN K, ZHANG Y P, ZHANG S L, XIAO R. Promoting effect of Pd modification on the M/TiO2 (M=V, Ce, Mn) catalyst for catalytic oxidation of dichloromethane (DCM)[J]. Chem. Eng. Sci., 2021,234116405. doi: 10.1016/j.ces.2020.116405

    17. [17]

      LIU W J, LONG Y F, ZHOU Y Y, LIU S N, TONG X, YIN Y J, LI X Y, HU K, HU J J. Excellent low temperature NH3-SCR and NH3-SCO performance over Ag-Mn/Ce-Ti catalyst: Evaluation and charac-terization[J]. Mol. Catal., 2022,528112510. doi: 10.1016/j.mcat.2022.112510

    18. [18]

      YANG J, REN S, SU B X, ZHOU Y H, HU G, JIANG L J, CAO J, LIU W Z, YAO L, KONG M, YANG J, LIU Q C. Insight into N2O formation over different crystal phases of MnO2 during low-temperature NH3-SCR of NO[J]. Catal. Lett., 2021,151(10):2964-2971. doi: 10.1007/s10562-021-03541-8

    19. [19]

      DUAN K J, TANG X L, YI H H, NING P, WANG L D. Rare earth oxide modified Cu-Mn compounds supported on TiO2 catalysts for low temperature selective catalytic oxidation of ammonia and in lean oxygen[J]. J. Rare Earths, 2010,28:338-342. doi: 10.1016/S1002-0721(10)60277-3

    20. [20]

      YAO X J, ZHAO R D, CHEN L, DU J, TAO C Y, YANG F M, DONG L. Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile[J]. Appl. Catal. B-Environ., 2017,208:82-93. doi: 10.1016/j.apcatb.2017.02.060

    21. [21]

      WANG C Z. Construction of flexible Mn-based SCR denitration catalyst and study on sulfur resistance mechanism[D]. Beijing: Beijing University of Science and Technology, 2022: 111-117

    22. [22]

      ZHANG P, CHEN A L, LAN T W, LIU X Y, YAN T T, REN W, ZHANG D S. Balancing acid and redox sites of phosphorylated CeO2 catalysts for NOx reduction: The promoting and inhibiting mechanism of phosphorus[J]. J. Hazard. Mater., 2023,441129867. doi: 10.1016/j.jhazmat.2022.129867

    23. [23]

      QU Z P, FAN R, WANG Z, WANG H, MIAO L. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method[J]. Appl. Surf. Sci., 2015,351:573-579. doi: 10.1016/j.apsusc.2015.05.154

    24. [24]

      SHIN J H, KIM G J, SUNG C H. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen[J]. Appl. Surf. Sci., 2020,506144906. doi: 10.1016/j.apsusc.2019.144906

    25. [25]

      CHENG S S, HAN Z T, ZHAO H Z, LI Y S, LU S J. A novel bifunctional Pt/Ce/WZrOx catalyst for efficient selective oxidation of high-concentration NH3[J]. Chem. Eng. J., 2024,479147876. doi: 10.1016/j.cej.2023.147876

    26. [26]

      PENG R S, LI S J, SUN X B, REN Q M, CHEN L M, FU M L, WU J L, YE D Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Appl. Catal. B-Environ., 2018,220:462-470. doi: 10.1016/j.apcatb.2017.07.048

    27. [27]

      REN S D, LIANG W J, LI Q L, ZHU Y X. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement[J]. Chemosphere, 2020,251126382. doi: 10.1016/j.chemosphere.2020.126382

    28. [28]

      YU J, GUO F, WANG Y L, ZHU J H, LIU Y Y, SU F B, GAO S Q, XU G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Appl. Catal. B-Environ., 2010,95(1):160-168.

    29. [29]

      LI P, MA J Y, CHEN Z H, WANG L, GUO Y. Effect of Ru/α-MnO2 catalyst morphology on NH3-SCO reaction performance[J]. CIESC Journal, 2023,74(7):2908-2918.

    30. [30]

      ZHANG X Y, WANG H, MENG L L, NIE X W, QU Z P. Investigation on Cu2O surface reconstruction and catalytic performance of NH3-SCO by experimental and DFT studies[J]. ACS Appl. Energy Mater., 2020,3(4):3465-3476. doi: 10.1021/acsaem.9b02537

    31. [31]

      JIAN J, ZAHNG J M, SHE X, ZHOU H, YOU K Y, LUO H A. The effect of V4+/V5+ ratio on the catalytic performance of vanadium phosphorus oxide for NO2 oxidation of cyclohexane[J]. CIESC Journal, 2023,74(4):1570-1577.

    32. [32]

      XIE Y X, LIU T, SU S, LIU L J, ZHONG Y X, MA Z W, XU K, WANG Y, HU S, XIANG J. Effect of oxygen content in flue gas of industrial kiln on NH3-SCR denitration reaction of vanadium-titanium catalyst[J]. CIESC Journal, 2022,73(10):4410-4418.

    33. [33]

      WANG F, ZHU Y J, LI Z, SHAN Y L, SHAN W P, SHI X Y, YU Y B, ZHANG C B, LI K, NING P, ZHANG Y, HE H. Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst[J]. Catal. Today, 2021,376:311-317. doi: 10.1016/j.cattod.2020.06.039

    34. [34]

      GE S W. Preparation of Cu-Ti-based catalysts and their performance for NH3-SCO and NH3-SCR[D]. Taiyuan: Taiyuan University of Technology, 2022: 51-53

    35. [35]

      SVINTSITSKIY D A, KIBIS L S, STADNICHENKO A, SLAVINSKAYA E M, ROMANENKO A V, FEDOROVA E A, STONKUS O A, DORONKIN D E, MARCHUK V, ZIMINA A, CASAPU M, GRUNWALDT J D, BORONIN A I. Insight into the nature of active species of Pt/Al2O3 catalysts for low temperature NH3 oxidation[J]. ChemCatChem, 2020,12(3):867-880. doi: 10.1002/cctc.201901719

    36. [36]

      CHENG S S, HAN Z T, XU D, LI Y S, TIAN Y, ZENG Q L, LU S J. Copper loading effect on active species formation over Cu/SSZ-13 catalysts for selective catalytic oxidation of high-concentration NH3[J]. Process Saf. Environ. Protect., 2024,181:33-42. doi: 10.1016/j.psep.2023.10.065

    37. [37]

      SLAVINSKAYA E M, KIBIS L S, STONKUS O A, SVINTSITSKIY D A, STADNICHENKO A I, FEDOROVA E A, ROMANENKO A V, MARCHUK V, DORONKIN D E, BORONIN A I. The effects of platinum dispersion and Pt state on catalytic properties of Pt/Al2O3 in NH3 oxidation[J]. ChemCatChem, 2021,13(1):313-327. doi: 10.1002/cctc.202001320

    38. [38]

      LEE S M, LEE H H, SUNG C H. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Appl. Catal. A-Gen., 2014,470:189-198. doi: 10.1016/j.apcata.2013.10.057

    39. [39]

      QU Z P, WANG H, WANG S D, CHENG H, QIN Y, WANG Z. Role of the support on the behavior of Ag-based catalysts for NH3 selective catalytic oxidation (NH3-SCO)[J]. Appl. Surf. Sci., 2014,316:373-379. doi: 10.1016/j.apsusc.2014.08.023

    40. [40]

      ZHANG Q L, ZHANG T X, XIA F T, ZHANG Y Q, WANG H M, NING P. Promoting effects of acid enhancing on N2 selectivity for selectivity catalytic oxidation of NH3 over RuO/TiO2: The mechanism study[J]. Appl. Surf. Sci., 2020,500144044. doi: 10.1016/j.apsusc.2019.144044

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(2)
  • Abstract views(434)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return