Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction
- Corresponding author: Zhe CHEN, chenz@jlict.edu.cn
Citation:
Bing WEI, Jianfan ZHANG, Zhe CHEN. Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(3): 425-439.
doi:
10.11862/CJIC.20240201
HE F, TONG S, LUO Z Y, DING H R, CHENG Z Y, LI C X, QI Z F. Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide[J]. J. Energy Chem., 2023,79:398-409. doi: 10.1016/j.jechem.2023.01.020
ZHANG X L, GUO S X, GANDIONCO K A, BOND A M, ZHANG J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design[J]. Mater. Today Adv., 2020,7100074. doi: 10.1016/j.mtadv.2020.100074
PENG W K, LI F F, KONG S Y, GUO C X, WU H T, WANG J C, SHEN Y, MENG X G, ZHANG M X. Recent advances in nickel based catalysts in e CO2RR for carbon neutrality[J]. Carbon Energy, 2024,6(2)e498. doi: 10.1002/cey2.498
CHEN H, DONG F Y, MINTEER S D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials[J]. Nat. Catal., 2020,3(3):225-244. doi: 10.1038/s41929-019-0408-2
LIANG J, LI Z X, HE X, LUO Y S, ZHENG D D, WANG Y, LI T S, YING B W, SUN S J, CAI Z W, LIU Q, TANG B, SUN X P. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives[J]. Mater. Today, 2023,69:193-235. doi: 10.1016/j.mattod.2023.08.024
WANG G X. A significant breakthrough in electrocatalytic reduction of CO2 to ethylene and ethanol[J]. Sci. China Chem., 2020,63(8)10231024.
WEI B. Structural regulation of copperand carbonbased catalysts and their electrochemical CO2 conversion performance[D]. Zhenjiang: Jiangsu University, 2021: 1-6
ADEGOKE K A, ADEGOKE R O, IBRAHIM A O, ADEGOKE S A, BELLO O S. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu based materials[J]. Sustain. Mater. Technol., 2020,25e00200.
LI X D, WANG S M, LI L, ZU X L, SUN Y F, XIE Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction[J]. Accounts Chem. Res., 2020,53(12):2964-2974. doi: 10.1021/acs.accounts.0c00626
LI R Z, WANG D S. Superiority of dual-atom catalysts in electrocatalysis: One step further than singleatom catalysts[J]. Adv. Energy Mater., 2022,12(9)2103564. doi: 10.1002/aenm.202103564
LIU K H, LI J, LIU Y Y, WANG M R, CUI H T. Dual metal atom catalysts: Advantages in electrocatalytic reactions[J]. J. Energy Chem., 2023,79:515-534. doi: 10.1016/j.jechem.2023.01.021
REN S, LEES E W, HUNT C, JEWLAL A, KIM Y, ZHANG Z S, MOWBRAY B A W, FINK A G, MELO L, GRANT E R, BERLINGUETTE C P. Catalyst aggregation matters for immobilized molecular CO2RR electrocatalysts[J]. J. Am. Chem. Soc., 2023,145(8):4414-4420. doi: 10.1021/jacs.2c08380
LI J C, KUANG Y, MENG Y T, TIAN X, HUNG W H, ZHANG X, LI A W, XU M Q, ZHOU W, KU C Y, CHIANG C Y, ZHU G Z, GUO J Y, SUN X M, DAI H J. Electroreduction of CO2 to formate on a copper based electrocatalyst at high pressures with high energy conversion efficiency[J]. J. Am. Chem. Soc., 2020,142(16)72767282.
THEVENON A, ROSAS-HERNáNDEZ A, FONTANI HERREROS A M, AGAPIE T, PETERS J C. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction[J]. ACS Catal., 2021,11(8):4530-4537. doi: 10.1021/acscatal.1c00338
ZHU Y T, CUI X Y, LIU H L, GUO Z G, DANG Y F, FAN Z X, ZHANG Z C, HU W P. Tandem catalysis in electrochemical CO2 reduction reaction[J]. Nano Res., 2021,14(12):4471-4486. doi: 10.1007/s12274-021-3448-2
ZHANG B A, NOCERA D G. Cascade electrochemical reduction of carbon dioxide with bimetallic nanowire and foam electrodes[J]. ChemElectroChem, 2021,8(10):1918-1924. doi: 10.1002/celc.202100295
REN H A, WANG X Y, ZHOU X M, WANG T, LIU Y P, WANG C, GUAN Q X, LI W. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects[J]. J. Energy Chem., 2023,79:263-271. doi: 10.1016/j.jechem.2023.01.017
ZHAO G X, HUANG X B, WANG X X, WANG X K. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review[J]. J. Mater. Chem. A, 2017,5(41):21625-21649. doi: 10.1039/C7TA07290B
MENG Y X, HUANG H J, ZHANG Y, CAO Y Y, LU H F, LI X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms[J]. Front. Chem., 2023,111172146. doi: 10.3389/fchem.2023.1172146
ROTH ZAWADZKI A M, NIELSEN A J, TANKARD R E, KIBSGAARD J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, characterization, and activity evaluation[J]. ACS Catal., 2024,14(2):1121-1145. doi: 10.1021/acscatal.3c05000
CHEN Y, LIN J, PAN Q, LIU X, MA T Y, WANG X D. Inter-metal interaction of dual atom catalysts in heterogeneous catalysis[J]. Angew. Chem.-Int. Edit., 2023,62e202306469. doi: 10.1002/anie.202306469
ZHAO Q, CRESPO-OTERO R, DI TOMMASO D. The role of copper in enhancing the performance of heteronuclear diatomic catalysts for the electrochemical CO2 conversion to C1 chemicals[J]. J. Energy Chem., 2023,85:490-500. doi: 10.1016/j.jechem.2023.06.029
YE R Z, ZHU J Y, TONG Y, FENG D M, CHEN P Z. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate[J]. J. Energy Chem., 2023,83:180-188. doi: 10.1016/j.jechem.2023.04.011
WANG J, ZHU F F, CHEN B Y, DENG S, HU B C, LIU H, WU M, HAO J H, LI L H, SHI W D. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR[J]. Chin. J. Catal., 2023,49:132-140. doi: 10.1016/S1872-2067(23)64443-2
JIA Y F, DING Y X, SONG T, XU Y L, LI Y Q, DUAN L L, LI F, SUN L C, FAN K. Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C 2+ products[J]. Adv. Sci., 2023,10(28)2303726. doi: 10.1002/advs.202303726
CHANG F F, ZHU K, LIU C H, WEI J C, YANG S W, ZHANG Q, YANG L, WANG X L, BAI Z Y. Construction of Cu-Ni atomic pair with bimetallic atom-cluster sites for enhanced CO2 electroreduction[J]. Adv. Funct. Mater., 2024,34(34)2400893. doi: 10.1002/adfm.202400893
ZHANG Y Q, LIU H W, ZHAO S Y, XIE C, HUANG Z G, WANG S Y. Insights into the dynamic evolution of defects in electrocatalysts[J]. Adv. Mater., 2023,35(9)2209680. doi: 10.1002/adma.202209680
ZHANG Y Y, LIU S L, JI N N, WEI L Z, LIANG Q Y, LI J J, TIAN Z Q, SU J W, CHEN Q W. Modulation of the electronic structure of metallic bismuth catalysts by cerium doping to facilitate electrocatalytic CO2 reduction to formate[J]. J. Mater. Chem. A, 2024,12(13):7528-7535. doi: 10.1039/D4TA00091A
GUO Y, WANG M L, ZHU Q J, XIAO D Q, MA D. Ensemble effect for single atom, small cluster and nanoparticle catalysts[J]. Nat. Catal., 2022,5(9):766-776. doi: 10.1038/s41929-022-00839-7
WU M, XIONG Y S, HU B C, ZHANG Z Y, WEI B, LI L H, HAO J H, SHI W D. Indium doped bismuth subcarbonate nanosheets for efficient electrochemical reduction of carbon dioxide to formate in a wide potential window[J]. J. Colloid Interface Sci., 2022,624:261-269. doi: 10.1016/j.jcis.2022.05.054
SHEN X Y, LIU X K, WANG S C, CHEN T, ZHANG W, CAO L L, DING T, LIN Y, LIU D, WANG L, ZHANG W, YAO T. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction[J]. Nano Lett., 2021,21(1):686-692. doi: 10.1021/acs.nanolett.0c04291
WEI H L, TAN A D, XIANG Z P, ZHANG J, PIAO J H, LIANG Z X, WAN K, FU Z Y. Modulating p-orbital of bismuth nanosheet by nickel doping for electrocatalytic carbon dioxide reduction reaction[J]. ChemSusChem, 2022,15(15)e202200752. doi: 10.1002/cssc.202200752
BARREAU M, SALUSSO D, LI J, ZHANG J M, BORFECCHIA E, SOBCZAK K, BRAGLIA L, GALLET J J, TORELLI P, GUO H, LIN S, ZAFEIRATOS S. Ionic nickel embedded in ceria with high specific CO2 methanation activity[J]. Angew. Chem. - Int. Edit., 2023e202302087.
HASSAN J Z, ZAHEER A, RAZA A, LI G. Au-based heterostructure composites for photo and electro catalytic energy conversions[J]. Sustain. Mater. Technol., 2023,36e00609.
GE Y Y, HUANG Z Q, LING C Y, CHEN B, LIU G G, ZHOU M, LIU J W, ZHANG X, CHENG H F, LIU G H, DU Y H, SUN C J, TAN C L, HUANG J T, YIN P F, FAN Z X, CHEN Y, YANG N L, ZHANG H. Phase selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles[J]. J. Am. Chem. Soc., 2020,142(44):18971-18980. doi: 10.1021/jacs.0c09461
LI C, YAN S H, FANG J Y. Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications[J]. Small, 2021,17(46)e2102244. doi: 10.1002/smll.202102244
SUN C W, HAO J H, WEI B, WU M, LIU H, XIONG Y S, HU B C, LI L H, CHEN M, SHI W D. Cu/CdCO3 catalysts for efficient electrochemical CO2 reduction over the wide potential window[J]. Chin. Chem. Lett., 2023,34(12)108520. doi: 10.1016/j.cclet.2023.108520
XIONG Y S, WEI B, WU M, HU B C, ZHU F F, HAO J H, SHI W D. Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window[J]. J. CO2 Util., 2021,51101621. doi: 10.1016/j.jcou.2021.101621
ZHANG Y Z, JANG H, GE X, ZHANG W, LI Z J, HOU L Q, ZHAI L, WEI X Q, WANG Z, KIM M G, LIU S G, QIN Q, LIU X, CHO J. Singleatom Sn on tensile-Strained ZnO nanosheets for highly efficient conversion of CO2 into formate[J]. Adv. Energy Mater., 2022,12(45)2202695. doi: 10.1002/aenm.202202695
WANG H B, ZHANG H, HUANG Y, WANG H Y, OZDEN A, YAO K L, LI H M, GUO Q Y, LIU Y C, VOMIERO A, WANG Y H, QIAN Z, LI J, WANG Z Y, SUN X H, LIANG H Y. Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products[J]. ACS Nano, 2023,17(1):346-354. doi: 10.1021/acsnano.2c08453
ZHU Y, SUN X, ZHANG R, FENG X C, ZHU Y. Interfacial electronic interaction in amorphous-crystalline CeOx-Sn heterostructures for optimizing CO2 to formate conversion[J]. Small, 2024,20(32)2400191. doi: 10.1002/smll.202400191
BAO K L, ZHOU Y J, WU J, LI Z N, YAN X, HUANG H, LIU Y, KANG Z H. Super branched PdCu alloy for efficiently converting carbon dioxide to carbon monoxide[J]. Nanomaterials, 2023,13(3)603. doi: 10.3390/nano13030603
HUANG H Z, LIU D, CHEN L W, ZHU Z J J, LI J N, YU Z L, SU X, JING X T, WU S Q, TIAN W J, YIN A X. Ultrathin dendritic Pd-Ag nanoplates for efficient and durable electrocatalytic reduction of CO2 to formate[J]. Chem.-Asian J., 2023,18(9)e202300110. doi: 10.1002/asia.202300110
LI H X, YUE X, QIU Y S, XIAO Z, YU X B, XUE C, XIANG J H. Selective electroreduction of CO2 to formate over the coelectrodeposited Cu/Sn bimetallic catalyst[J]. Mater. Today Energy, 2021,21100797. doi: 10.1016/j.mtener.2021.100797
LIU L Z, AKHOUNDZADEH H, LI M T, HUANG H W. Alloy cata-lysts for electrocatalytic CO2 reduction[J]. Small Methods, 2023,7(9)2300482. doi: 10.1002/smtd.202300482
TODOROKI N, ISHIJIMA M, CUYA HUAMAN J L, TANAKA Y, BALACHANDRAN J. Composition sensitive selectivity and activity of electrochemical carbon dioxide reduction on Pd-Cu solid-solution alloy nanoparticles[J]. Catal. Sci. Technol., 2023,13(17):5025-5032. doi: 10.1039/D3CY00748K
XU Y Z, LI C L, XIAO Y Q, WU C H, LI Y M, LI Y B, HAN J G, LIU Q H, HE J F. Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying[J]. ACS Appl. Mater. Interfaces, 2022,14(9):11567-11574. doi: 10.1021/acsami.2c00593
KIM D, RESASCO J, YU Y, ASIRI A M, YANG P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold copper bimetallic nanoparticles[J]. Nat. Commun., 2014,5(1)4948. doi: 10.1038/ncomms5948
ILLAS F. Fundamental concepts in heterogeneous catalysis[J]. Angew. Chem.-Int. Edit., 2015,54(36):10404-10405. doi: 10.1002/anie.201506018
WANG M, LIU S, CHEN B, TIAN F Y, PENG C. Synergistic geometric and electronic effects in Bi-Cu bimetallic catalysts for CO2 electroreduction to formate over a wide potential window[J]. ACS Sustain. Chem. Eng., 2022,10(17):5693-5701. doi: 10.1021/acssuschemeng.2c01409
SUN Y D, WANG F F, LIU F, ZHANG S K, ZHAO S L, CHEN J, HUANG Y, LIU X J, WU Y P, CHEN Y H. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu[J]. ACS Appl. Mater. Interfaces, 2022,14(7):8896-8905. doi: 10.1021/acsami.1c19847
DONG H, ZHU H, LI Q, ZHOU M, REN X C, MA T, LIU J Z, ZENG Z Y, LUO X L, LI S, CHENG C. Atomically structured metal-organic frameworks: A powerful chemical path for noble metal-based electrocatalysts[J]. Adv. Funct. Mater., 2023,33(22)2300294. doi: 10.1002/adfm.202300294
WANG G Z, MA Y B, WANG J, LU P Y, WANG Y H, FAN Z X. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction[J]. Nanoscale, 2023,15(14)64566475.
WANG F Q, ZHANG W L, WAN H B, LI C X, AN W K, SHENG X, LIANG X Y, WANG X P, REN Y L, ZHENG X, LV D C, QIN Y C. Recent progress in advanced core shell metal based catalysts for electrochemical carbon dioxide reduction[J]. Chin. Chem. Lett., 2022,33(5):2259-2269. doi: 10.1016/j.cclet.2021.08.074
JIANG Y H, WANG Y T, CHEN R Z, LI Y H, LI C Z. Minireview and perspectives of bimetallic metal-organic framework electrocatalysts for carbon dioxide reduction[J]. Energy Fuel, 2023,37(23):17951-17965. doi: 10.1021/acs.energyfuels.3c01657
DU C, LI P, ZHUANG Z H, FANG Z Y, HE S J, FENG L G, CHEN W. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis[J]. Coord. Chem. Rev., 2022,466214604. doi: 10.1016/j.ccr.2022.214604
LI X F, ZHU Q L. MOF-based materials for photoand electrocatalytic CO2 reduction[J]. EnergyChem, 2020,2(3)100033. doi: 10.1016/j.enchem.2020.100033
WANG J, ZHANG Y M, MA Y B, YIN J W, WANG Y H, FAN Z X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials[J]. ACS Mater. Lett., 2022,4(11):2058-2079. doi: 10.1021/acsmaterialslett.2c00751
LIU M X, PENG Y, CHEN W B, CAO S, CHEN S G, MENG F L, JIN Y C, HOU C C, ZOU R Q, XU Q. Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities[J]. Coord. Chem. Rev., 2024,506215726. doi: 10.1016/j.ccr.2024.215726
GAO Y, XIAO H, MA X F, YUE Z Z, LIU C M, ZHAO M, ZHANG L, ZHANG J M, LUO E G, HU T J, LV B L, JIA J F, WU H S. Gallium-indium bimetal sites in the indiumgallium metal organic framework for efficient electrocatalytic reduction of carbon dioxide into formate[J]. J. Mater. Chem. A, 2024,12(14):8272-8280. doi: 10.1039/D4TA00270A
YANG X X, DU Y R, LI X Q, DUAN G Y, CHEN Y M, XU B H. Covalent organic frameworks boost the silver electrocatalyzed reduction of CO2: The electronic and confinement effect[J]. ACS Appl. Mater. Interfaces, 2023,15(26):31533-31542. doi: 10.1021/acsami.3c05679
WANG J Y, HU H Y, LU S L, HU J D, ZHU H, DUAN F, DU M L. Conductive metal and covalent organic frameworks for electrocatalysis: Design principles, recent progress and perspective[J]. Nanoscale, 2022,14(2):277-288. doi: 10.1039/D1NR06197F
WEI B, HAO J H, GE B X, LUO W, CHEN Y F, XIONG Y S, LI L H, SHI W D. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic-nitrogen rich ultrathin carbon nanosheets[J]. J. Colloid Interface Sci., 2022,60826502659.
MA S C, WU K, FAN S J, LI Y, XIE Q, MA J X, YANG L J. Electrocatalytic CO2 reduction enhanced by Sb doping in MOF-derived carbon-supported Bi-based materials[J]. Sep. Purif. Technol., 2024,339126520. doi: 10.1016/j.seppur.2024.126520
ZHANG Q, HU P A, XU Z Y, TANG B B, ZHANG H R, XIAO Y H, WU Y C. Unravelling intrinsic descriptors based on a two-stage activity regulation of bimetallic 2D c-MOFs for CO2RR[J]. Nanoscale, 2023,15(10):4991-5000. doi: 10.1039/D2NR07301C
CHEN S H, LI W H, JIANG W J, YANG J R, ZHU J X, WANG L Q, OU H H, ZHUANG Z C, CHEN M Z, SUN X H, WANG D S, LI Y D. MOF encapsulating N-heterocyclic carbene-ligated copper singleatom site catalyst towards efficient methane electrosynthesis[J]. Angew. Chem.-Int. Edit., 2022,61(4)e202114450.
WANG Q R, YANG X F, ZANG H, CHEN F R, WANG C, YU N, GENG B Y. Metal-organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate[J]. Inorg. Chem., 2022,61(30):12003-12011. doi: 10.1021/acs.inorgchem.2c01961
YUE Y, CAI P Y, XU K, LI H Y, CHEN H Z, ZHOU H C, HUANG N. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts[J]. J. Am. Chem. Soc., 2021,143(43):18052-18060. doi: 10.1021/jacs.1c06238
HOANG M T, HAN C, MA Z P, MAO X, YANG Y, MADANI S S, SHAW P, YANG Y C, PENG L Y, TOE C Y, PAN J, AMAL R, DU A J, TESFAMICHAEL T, HAN Z J, WANG H X. Efficient CO2 reduction to formate on CsPbI 3 nanocrystals wrapped with reduced graphene oxide[J]. Nano-Micro Lett., 2023,15(1)161. doi: 10.1007/s40820-023-01132-3
JIANG K, SANDBERG R B, AKEY A J, LIU X Y, BELL D C, NØRSKOV J K, CHAN K R, WANG H T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction[J]. Nat. Catal., 2018,1(2):111-119. doi: 10.1038/s41929-017-0009-x
ZHANG T, TANG Y F, YU M L, LIU S, LIU L B, FU X Z, LUO J L, LIU S B. Smart design strategies of metal-based compounds for electrochemical CO2 reduction: From microscopic structure to atomic level active site[J]. Chem. Catalysis, 2024,4(2)100906. doi: 10.1016/j.checat.2024.100906
MA Y B, YU J L, SUN M Z, CHEN B, ZHOU X C, YE C L, GUAN Z Q, GUO W H, WANG G, LU S Y, XIA D S, WANG Y H, HE Z, ZHENG L, YUN Q B, WANG L Q, ZHOU J W, LU P Y, YIN J W, ZHAO Y F, LUO Z B, ZHAI L, LIAO L W, ZHU Z L, YE R Q, CHEN Y, LU Y, XI S B, HUANG B L, LEE C S, FAN Z X. Confined growth of silver copper Janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction[J]. Adv. Mater., 2022,34(19)e2110607. doi: 10.1002/adma.202110607
WEI B, XIONG Y S, ZHANG Z Y, HAO J H, LI L H, SHI W D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet[J]. Appl. Catal. B- Environ., 2021,283119646. doi: 10.1016/j.apcatb.2020.119646
HAN L, WANG C W, LUO S S, ZHOU Y T, LI B, LIU M. Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO2 reduction[J]. Green Energy Environ., 2023,9(8):1314-1320.
GU L, FTOUNI J, CHOWDHURY A D. Evaluating carbon dioxide reduction over copper supported on precipitated calcium carbonate via electrochemical route[J]. Mater. Today Chem., 2023,30101539. doi: 10.1016/j.mtchem.2023.101539
ZHANG X H, SUN Z H, JIN R, ZHU C W, ZHAO C L, LIN Y, GUAN Q Q, CAO L N, WANG H W, LI S, YU H C, LIU X Y, WANG L L, WEI S Q, LI W X, LU J L. Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis[J]. Nat. Commun., 2023,14(1)530. doi: 10.1038/s41467-023-36147-2
SU X R, WANG C Y, ZHAO F, WEI T X, ZHAO D, ZHANG J T. Size effects of supported Cu based catalysts for the electrocatalytic CO2 reduction reaction[J]. J. Mater. Chem. A, 2023,11(43):23188-23210. doi: 10.1039/D3TA04929A
XIONG L K, ZHANG X, CHEN L, DENG Z, HAN S, CHEN Y F, ZHONG J, SUN H, LIAN Y B, YANG B Y, YUAN X Z, YU H, LIU Y, YANG X Q, GUO J, RÜMMELI M H, JIAO Y, PENG Y. Geometric modulation of local CO flux in Ag@Cu2Onanoreactors for steering the CO2RR pathway toward high-efficacy methane production[J]. Adv. Mater., 2021,33(32)2101741. doi: 10.1002/adma.202101741
LIU L C, CORMA A. Structural transformations of solid electrocatalysts and photocatalysts[J]. Nat. Rev. Chem., 2021,5(4):256-276. doi: 10.1038/s41570-021-00255-8
LI X D, WANG S M, LI L, SUN Y F, XIE Y. Progress and perspective for in situ studies of CO2 reduction[J]. J. Am. Chem. Soc., 2020,142(21):9567-9581.
MENDOZA D, DONG S T, LASSALLE-KAISER B. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: Status and perspectives[J]. Curr. Opin. Colloid Interface Sci., 2022,61101635. doi: 10.1016/j.cocis.2022.101635
HE Y Z, LIU S S, WANG M F, CHENG Q Y, JI H Q, QIAN T, YAN C L. Advanced in situ characterization techniques for direct observation of gas involved electrochemical reactions[J]. Energy Environ. Mater., 2023,6(6)e12552. doi: 10.1002/eem2.12552
CAO X Y, TAN D X, WULAN B, HUI K S, HUI K N, ZHANG J T. In situ characterization for boosting electrocatalytic carbon dioxide reduction[J]. Small Methods, 2021,5(10)2100700. doi: 10.1002/smtd.202100700
GONG Y, HE T. Gaining deep understanding of electrochemical CO2RR with in situ/operando techniques[J]. Small Methods, 2023,7(11)2300702. doi: 10.1002/smtd.202300702
LEE S H, LIN J C, FARMAND M, LANDERS A T, FEASTER J T, AVILÉS ACOSTA J E, BEEMAN J W, YE Y F, YANO J, MEHTA A, DAVIS R C, JARAMILLO T F, HAHN C, DRISDELL W S. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization[J]. J. Am. Chem. Soc., 2020,143(2):588-592.
XU Z Z, LIANG Z B, GUO W H, ZOU R Q. In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts[J]. Coord. Chem. Rev., 2021,436213824. doi: 10.1016/j.ccr.2021.213824
HAN Y, XU H Z, LI Q, DU A J, YAN X C. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: A review[J]. Front. Chem., 2023,111286257. doi: 10.3389/fchem.2023.1286257
KIM H J, LEE G, OH S H V, STAMPFL C, SOON A. Recalibrating the experimentally derived structure of the metastable surface oxide on copper via machine learning-accelerated in silico global optimization[J]. ACS Nano, 2024,18(5):4559-4569. doi: 10.1021/acsnano.3c12249
ZHANG Q M, WANG Z Y, ZHANG H, LIU X H, ZHANG W, ZHAO L B. Micro-kinetic modelling of CO reduction reaction on single atom catalysts accelerated by machine learning[J]. Phys. Chem. Chem. Phys., 2024,26(14):11037-11047. doi: 10.1039/D4CP00325J
FENG H S, DING H, HE P N, WANG S, LI Z Y, ZHENG Z K, YANG Y S, WEI M, ZHANG X. Data-driven design of dual-metalsite catalysts for the electrochemical carbon dioxide reduction reaction[J]. J. Mater. Chem. A, 2022,10(36):18803-18811. doi: 10.1039/D2TA04556G
ZHAI Z B, YAN W, DONG L, DENG S Q, WILKINSON D P, WANG X M, ZHANG L, ZHANG J J. Catalytically active sites of MOF derived electrocatalysts: Synthesis, characterization, theoretical calculations, and functional mechanisms[J]. J. Mater. Chem. A, 2021,9(36):20320-20344. doi: 10.1039/D1TA02896K
ZHENG Y B, ZHANG Q, SHI J, LI J L, MEI S N, YU Q W, YANG J M, LÜ J. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022,41(3):1209-1223.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
In c and d: atomistic structures optimized for each step are shown at the top. Sky blue, navy blue, brown, red, and white represent In, Cu, C, O, and H atoms, respectively. In e: atomistic structures optimized for each step are shown at the top. Sky blue, brown, red, and white represent In, C, O, and H atoms, respectively.