Citation: Bing WEI, Jianfan ZHANG, Zhe CHEN. Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201 shu

Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction

  • Corresponding author: Zhe CHEN, chenz@jlict.edu.cn
  • Received Date: 30 May 2024
    Revised Date: 14 January 2025

Figures(11)

  • Electrocatalytic carbon dioxide reduction technology can effectively convert CO2 into valuable chemicals to reduce CO2 emissions, providing a solution for CO2 management and helping China to achieve the carbon emission target of"carbon peak and carbon neutrality". Currently, the commonly used monometallic nanocatalysts have the shortcomings of a single catalytic site and difficult regulation of the adsorption energy between products and intermediates, and face problems such as poor catalyst selectivity, activity, and stability. In contrast, bimetallic nanocatalysts have been widely studied due to the existence of two atomic coordinations, which can adjust the electronic structure of the catalyst, finely regulate the binding energy of the intermediates, and bring abundant and flexible active sites. This paper reviews the latest research progress of bimetallic nanocatalysts, mainly focusing on the fine regulation of bimetallic nanocatalysts, such as doping control, heterogeneous structure control, alloying control, and geometric structure control, and the catalytic mechanism of bimetal nanocatalysts such as synergistic effect, stress effect, and electronic effect. Moreover, the current shortcomings and future research of bimetallic nanocatalysts are discussed.
  • 加载中
    1. [1]

      HE F, TONG S, LUO Z Y, DING H R, CHENG Z Y, LI C X, QI Z F. Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide[J]. J. Energy Chem., 2023,79:398-409. doi: 10.1016/j.jechem.2023.01.020

    2. [2]

      ZHANG X L, GUO S X, GANDIONCO K A, BOND A M, ZHANG J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design[J]. Mater. Today Adv., 2020,7100074. doi: 10.1016/j.mtadv.2020.100074

    3. [3]

      PENG W K, LI F F, KONG S Y, GUO C X, WU H T, WANG J C, SHEN Y, MENG X G, ZHANG M X. Recent advances in nickel based catalysts in e CO2RR for carbon neutrality[J]. Carbon Energy, 2024,6(2)e498. doi: 10.1002/cey2.498

    4. [4]

      CHEN H, DONG F Y, MINTEER S D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials[J]. Nat. Catal., 2020,3(3):225-244. doi: 10.1038/s41929-019-0408-2

    5. [5]

      LIANG J, LI Z X, HE X, LUO Y S, ZHENG D D, WANG Y, LI T S, YING B W, SUN S J, CAI Z W, LIU Q, TANG B, SUN X P. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives[J]. Mater. Today, 2023,69:193-235. doi: 10.1016/j.mattod.2023.08.024

    6. [6]

      WANG G X. A significant breakthrough in electrocatalytic reduction of CO2 to ethylene and ethanol[J]. Sci. China Chem., 2020,63(8)10231024.

    7. [7]

      WEI B. Structural regulation of copperand carbonbased catalysts and their electrochemical CO2 conversion performance[D]. Zhenjiang: Jiangsu University, 2021: 1-6

    8. [8]

      ADEGOKE K A, ADEGOKE R O, IBRAHIM A O, ADEGOKE S A, BELLO O S. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu based materials[J]. Sustain. Mater. Technol., 2020,25e00200.

    9. [9]

      LI X D, WANG S M, LI L, ZU X L, SUN Y F, XIE Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction[J]. Accounts Chem. Res., 2020,53(12):2964-2974. doi: 10.1021/acs.accounts.0c00626

    10. [10]

      LI R Z, WANG D S. Superiority of dual-atom catalysts in electrocatalysis: One step further than singleatom catalysts[J]. Adv. Energy Mater., 2022,12(9)2103564. doi: 10.1002/aenm.202103564

    11. [11]

      LIU K H, LI J, LIU Y Y, WANG M R, CUI H T. Dual metal atom catalysts: Advantages in electrocatalytic reactions[J]. J. Energy Chem., 2023,79:515-534. doi: 10.1016/j.jechem.2023.01.021

    12. [12]

      REN S, LEES E W, HUNT C, JEWLAL A, KIM Y, ZHANG Z S, MOWBRAY B A W, FINK A G, MELO L, GRANT E R, BERLINGUETTE C P. Catalyst aggregation matters for immobilized molecular CO2RR electrocatalysts[J]. J. Am. Chem. Soc., 2023,145(8):4414-4420. doi: 10.1021/jacs.2c08380

    13. [13]

      LI J C, KUANG Y, MENG Y T, TIAN X, HUNG W H, ZHANG X, LI A W, XU M Q, ZHOU W, KU C Y, CHIANG C Y, ZHU G Z, GUO J Y, SUN X M, DAI H J. Electroreduction of CO2 to formate on a copper based electrocatalyst at high pressures with high energy conversion efficiency[J]. J. Am. Chem. Soc., 2020,142(16)72767282.

    14. [14]

      THEVENON A, ROSAS-HERNáNDEZ A, FONTANI HERREROS A M, AGAPIE T, PETERS J C. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction[J]. ACS Catal., 2021,11(8):4530-4537. doi: 10.1021/acscatal.1c00338

    15. [15]

      ZHU Y T, CUI X Y, LIU H L, GUO Z G, DANG Y F, FAN Z X, ZHANG Z C, HU W P. Tandem catalysis in electrochemical CO2 reduction reaction[J]. Nano Res., 2021,14(12):4471-4486. doi: 10.1007/s12274-021-3448-2

    16. [16]

      ZHANG B A, NOCERA D G. Cascade electrochemical reduction of carbon dioxide with bimetallic nanowire and foam electrodes[J]. ChemElectroChem, 2021,8(10):1918-1924. doi: 10.1002/celc.202100295

    17. [17]

      REN H A, WANG X Y, ZHOU X M, WANG T, LIU Y P, WANG C, GUAN Q X, LI W. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects[J]. J. Energy Chem., 2023,79:263-271. doi: 10.1016/j.jechem.2023.01.017

    18. [18]

      ZHAO G X, HUANG X B, WANG X X, WANG X K. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review[J]. J. Mater. Chem. A, 2017,5(41):21625-21649. doi: 10.1039/C7TA07290B

    19. [19]

      MENG Y X, HUANG H J, ZHANG Y, CAO Y Y, LU H F, LI X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms[J]. Front. Chem., 2023,111172146. doi: 10.3389/fchem.2023.1172146

    20. [20]

      ROTH ZAWADZKI A M, NIELSEN A J, TANKARD R E, KIBSGAARD J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, characterization, and activity evaluation[J]. ACS Catal., 2024,14(2):1121-1145. doi: 10.1021/acscatal.3c05000

    21. [21]

      CHEN Y, LIN J, PAN Q, LIU X, MA T Y, WANG X D. Inter-metal interaction of dual atom catalysts in heterogeneous catalysis[J]. Angew. Chem.-Int. Edit., 2023,62e202306469. doi: 10.1002/anie.202306469

    22. [22]

      ZHAO Q, CRESPO-OTERO R, DI TOMMASO D. The role of copper in enhancing the performance of heteronuclear diatomic catalysts for the electrochemical CO2 conversion to C1 chemicals[J]. J. Energy Chem., 2023,85:490-500. doi: 10.1016/j.jechem.2023.06.029

    23. [23]

      YE R Z, ZHU J Y, TONG Y, FENG D M, CHEN P Z. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate[J]. J. Energy Chem., 2023,83:180-188. doi: 10.1016/j.jechem.2023.04.011

    24. [24]

      WANG J, ZHU F F, CHEN B Y, DENG S, HU B C, LIU H, WU M, HAO J H, LI L H, SHI W D. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR[J]. Chin. J. Catal., 2023,49:132-140. doi: 10.1016/S1872-2067(23)64443-2

    25. [25]

      JIA Y F, DING Y X, SONG T, XU Y L, LI Y Q, DUAN L L, LI F, SUN L C, FAN K. Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C 2+ products[J]. Adv. Sci., 2023,10(28)2303726. doi: 10.1002/advs.202303726

    26. [26]

      CHANG F F, ZHU K, LIU C H, WEI J C, YANG S W, ZHANG Q, YANG L, WANG X L, BAI Z Y. Construction of Cu-Ni atomic pair with bimetallic atom-cluster sites for enhanced CO2 electroreduction[J]. Adv. Funct. Mater., 2024,34(34)2400893. doi: 10.1002/adfm.202400893

    27. [27]

      ZHANG Y Q, LIU H W, ZHAO S Y, XIE C, HUANG Z G, WANG S Y. Insights into the dynamic evolution of defects in electrocatalysts[J]. Adv. Mater., 2023,35(9)2209680. doi: 10.1002/adma.202209680

    28. [28]

      ZHANG Y Y, LIU S L, JI N N, WEI L Z, LIANG Q Y, LI J J, TIAN Z Q, SU J W, CHEN Q W. Modulation of the electronic structure of metallic bismuth catalysts by cerium doping to facilitate electrocatalytic CO2 reduction to formate[J]. J. Mater. Chem. A, 2024,12(13):7528-7535. doi: 10.1039/D4TA00091A

    29. [29]

      GUO Y, WANG M L, ZHU Q J, XIAO D Q, MA D. Ensemble effect for single atom, small cluster and nanoparticle catalysts[J]. Nat. Catal., 2022,5(9):766-776. doi: 10.1038/s41929-022-00839-7

    30. [30]

      WU M, XIONG Y S, HU B C, ZHANG Z Y, WEI B, LI L H, HAO J H, SHI W D. Indium doped bismuth subcarbonate nanosheets for efficient electrochemical reduction of carbon dioxide to formate in a wide potential window[J]. J. Colloid Interface Sci., 2022,624:261-269. doi: 10.1016/j.jcis.2022.05.054

    31. [31]

      SHEN X Y, LIU X K, WANG S C, CHEN T, ZHANG W, CAO L L, DING T, LIN Y, LIU D, WANG L, ZHANG W, YAO T. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction[J]. Nano Lett., 2021,21(1):686-692. doi: 10.1021/acs.nanolett.0c04291

    32. [32]

      WEI H L, TAN A D, XIANG Z P, ZHANG J, PIAO J H, LIANG Z X, WAN K, FU Z Y. Modulating p-orbital of bismuth nanosheet by nickel doping for electrocatalytic carbon dioxide reduction reaction[J]. ChemSusChem, 2022,15(15)e202200752. doi: 10.1002/cssc.202200752

    33. [33]

      BARREAU M, SALUSSO D, LI J, ZHANG J M, BORFECCHIA E, SOBCZAK K, BRAGLIA L, GALLET J J, TORELLI P, GUO H, LIN S, ZAFEIRATOS S. Ionic nickel embedded in ceria with high specific CO2 methanation activity[J]. Angew. Chem. - Int. Edit., 2023e202302087.

    34. [34]

      HASSAN J Z, ZAHEER A, RAZA A, LI G. Au-based heterostructure composites for photo and electro catalytic energy conversions[J]. Sustain. Mater. Technol., 2023,36e00609.

    35. [35]

      GE Y Y, HUANG Z Q, LING C Y, CHEN B, LIU G G, ZHOU M, LIU J W, ZHANG X, CHENG H F, LIU G H, DU Y H, SUN C J, TAN C L, HUANG J T, YIN P F, FAN Z X, CHEN Y, YANG N L, ZHANG H. Phase selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles[J]. J. Am. Chem. Soc., 2020,142(44):18971-18980. doi: 10.1021/jacs.0c09461

    36. [36]

      LI C, YAN S H, FANG J Y. Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications[J]. Small, 2021,17(46)e2102244. doi: 10.1002/smll.202102244

    37. [37]

      SUN C W, HAO J H, WEI B, WU M, LIU H, XIONG Y S, HU B C, LI L H, CHEN M, SHI W D. Cu/CdCO3 catalysts for efficient electrochemical CO2 reduction over the wide potential window[J]. Chin. Chem. Lett., 2023,34(12)108520. doi: 10.1016/j.cclet.2023.108520

    38. [38]

      XIONG Y S, WEI B, WU M, HU B C, ZHU F F, HAO J H, SHI W D. Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window[J]. J. CO2 Util., 2021,51101621. doi: 10.1016/j.jcou.2021.101621

    39. [39]

      ZHANG Y Z, JANG H, GE X, ZHANG W, LI Z J, HOU L Q, ZHAI L, WEI X Q, WANG Z, KIM M G, LIU S G, QIN Q, LIU X, CHO J. Singleatom Sn on tensile-Strained ZnO nanosheets for highly efficient conversion of CO2 into formate[J]. Adv. Energy Mater., 2022,12(45)2202695. doi: 10.1002/aenm.202202695

    40. [40]

      WANG H B, ZHANG H, HUANG Y, WANG H Y, OZDEN A, YAO K L, LI H M, GUO Q Y, LIU Y C, VOMIERO A, WANG Y H, QIAN Z, LI J, WANG Z Y, SUN X H, LIANG H Y. Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products[J]. ACS Nano, 2023,17(1):346-354. doi: 10.1021/acsnano.2c08453

    41. [41]

      ZHU Y, SUN X, ZHANG R, FENG X C, ZHU Y. Interfacial electronic interaction in amorphous-crystalline CeOx-Sn heterostructures for optimizing CO2 to formate conversion[J]. Small, 2024,20(32)2400191. doi: 10.1002/smll.202400191

    42. [42]

      BAO K L, ZHOU Y J, WU J, LI Z N, YAN X, HUANG H, LIU Y, KANG Z H. Super branched PdCu alloy for efficiently converting carbon dioxide to carbon monoxide[J]. Nanomaterials, 2023,13(3)603. doi: 10.3390/nano13030603

    43. [43]

      HUANG H Z, LIU D, CHEN L W, ZHU Z J J, LI J N, YU Z L, SU X, JING X T, WU S Q, TIAN W J, YIN A X. Ultrathin dendritic Pd-Ag nanoplates for efficient and durable electrocatalytic reduction of CO2 to formate[J]. Chem.-Asian J., 2023,18(9)e202300110. doi: 10.1002/asia.202300110

    44. [44]

      LI H X, YUE X, QIU Y S, XIAO Z, YU X B, XUE C, XIANG J H. Selective electroreduction of CO2 to formate over the coelectrodeposited Cu/Sn bimetallic catalyst[J]. Mater. Today Energy, 2021,21100797. doi: 10.1016/j.mtener.2021.100797

    45. [45]

      LIU L Z, AKHOUNDZADEH H, LI M T, HUANG H W. Alloy cata-lysts for electrocatalytic CO2 reduction[J]. Small Methods, 2023,7(9)2300482. doi: 10.1002/smtd.202300482

    46. [46]

      TODOROKI N, ISHIJIMA M, CUYA HUAMAN J L, TANAKA Y, BALACHANDRAN J. Composition sensitive selectivity and activity of electrochemical carbon dioxide reduction on Pd-Cu solid-solution alloy nanoparticles[J]. Catal. Sci. Technol., 2023,13(17):5025-5032. doi: 10.1039/D3CY00748K

    47. [47]

      XU Y Z, LI C L, XIAO Y Q, WU C H, LI Y M, LI Y B, HAN J G, LIU Q H, HE J F. Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying[J]. ACS Appl. Mater. Interfaces, 2022,14(9):11567-11574. doi: 10.1021/acsami.2c00593

    48. [48]

      KIM D, RESASCO J, YU Y, ASIRI A M, YANG P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold copper bimetallic nanoparticles[J]. Nat. Commun., 2014,5(1)4948. doi: 10.1038/ncomms5948

    49. [49]

      ILLAS F. Fundamental concepts in heterogeneous catalysis[J]. Angew. Chem.-Int. Edit., 2015,54(36):10404-10405. doi: 10.1002/anie.201506018

    50. [50]

      WANG M, LIU S, CHEN B, TIAN F Y, PENG C. Synergistic geometric and electronic effects in Bi-Cu bimetallic catalysts for CO2 electroreduction to formate over a wide potential window[J]. ACS Sustain. Chem. Eng., 2022,10(17):5693-5701. doi: 10.1021/acssuschemeng.2c01409

    51. [51]

      SUN Y D, WANG F F, LIU F, ZHANG S K, ZHAO S L, CHEN J, HUANG Y, LIU X J, WU Y P, CHEN Y H. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu[J]. ACS Appl. Mater. Interfaces, 2022,14(7):8896-8905. doi: 10.1021/acsami.1c19847

    52. [52]

      DONG H, ZHU H, LI Q, ZHOU M, REN X C, MA T, LIU J Z, ZENG Z Y, LUO X L, LI S, CHENG C. Atomically structured metal-organic frameworks: A powerful chemical path for noble metal-based electrocatalysts[J]. Adv. Funct. Mater., 2023,33(22)2300294. doi: 10.1002/adfm.202300294

    53. [53]

      WANG G Z, MA Y B, WANG J, LU P Y, WANG Y H, FAN Z X. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction[J]. Nanoscale, 2023,15(14)64566475.

    54. [54]

      WANG F Q, ZHANG W L, WAN H B, LI C X, AN W K, SHENG X, LIANG X Y, WANG X P, REN Y L, ZHENG X, LV D C, QIN Y C. Recent progress in advanced core shell metal based catalysts for electrochemical carbon dioxide reduction[J]. Chin. Chem. Lett., 2022,33(5):2259-2269. doi: 10.1016/j.cclet.2021.08.074

    55. [55]

      JIANG Y H, WANG Y T, CHEN R Z, LI Y H, LI C Z. Minireview and perspectives of bimetallic metal-organic framework electrocatalysts for carbon dioxide reduction[J]. Energy Fuel, 2023,37(23):17951-17965. doi: 10.1021/acs.energyfuels.3c01657

    56. [56]

      DU C, LI P, ZHUANG Z H, FANG Z Y, HE S J, FENG L G, CHEN W. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis[J]. Coord. Chem. Rev., 2022,466214604. doi: 10.1016/j.ccr.2022.214604

    57. [57]

      LI X F, ZHU Q L. MOF-based materials for photoand electrocatalytic CO2 reduction[J]. EnergyChem, 2020,2(3)100033. doi: 10.1016/j.enchem.2020.100033

    58. [58]

      WANG J, ZHANG Y M, MA Y B, YIN J W, WANG Y H, FAN Z X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials[J]. ACS Mater. Lett., 2022,4(11):2058-2079. doi: 10.1021/acsmaterialslett.2c00751

    59. [59]

      LIU M X, PENG Y, CHEN W B, CAO S, CHEN S G, MENG F L, JIN Y C, HOU C C, ZOU R Q, XU Q. Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities[J]. Coord. Chem. Rev., 2024,506215726. doi: 10.1016/j.ccr.2024.215726

    60. [60]

      GAO Y, XIAO H, MA X F, YUE Z Z, LIU C M, ZHAO M, ZHANG L, ZHANG J M, LUO E G, HU T J, LV B L, JIA J F, WU H S. Gallium-indium bimetal sites in the indiumgallium metal organic framework for efficient electrocatalytic reduction of carbon dioxide into formate[J]. J. Mater. Chem. A, 2024,12(14):8272-8280. doi: 10.1039/D4TA00270A

    61. [61]

      YANG X X, DU Y R, LI X Q, DUAN G Y, CHEN Y M, XU B H. Covalent organic frameworks boost the silver electrocatalyzed reduction of CO2: The electronic and confinement effect[J]. ACS Appl. Mater. Interfaces, 2023,15(26):31533-31542. doi: 10.1021/acsami.3c05679

    62. [62]

      WANG J Y, HU H Y, LU S L, HU J D, ZHU H, DUAN F, DU M L. Conductive metal and covalent organic frameworks for electrocatalysis: Design principles, recent progress and perspective[J]. Nanoscale, 2022,14(2):277-288. doi: 10.1039/D1NR06197F

    63. [63]

      WEI B, HAO J H, GE B X, LUO W, CHEN Y F, XIONG Y S, LI L H, SHI W D. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic-nitrogen rich ultrathin carbon nanosheets[J]. J. Colloid Interface Sci., 2022,60826502659.

    64. [64]

      MA S C, WU K, FAN S J, LI Y, XIE Q, MA J X, YANG L J. Electrocatalytic CO2 reduction enhanced by Sb doping in MOF-derived carbon-supported Bi-based materials[J]. Sep. Purif. Technol., 2024,339126520. doi: 10.1016/j.seppur.2024.126520

    65. [65]

      ZHANG Q, HU P A, XU Z Y, TANG B B, ZHANG H R, XIAO Y H, WU Y C. Unravelling intrinsic descriptors based on a two-stage activity regulation of bimetallic 2D c-MOFs for CO2RR[J]. Nanoscale, 2023,15(10):4991-5000. doi: 10.1039/D2NR07301C

    66. [66]

      CHEN S H, LI W H, JIANG W J, YANG J R, ZHU J X, WANG L Q, OU H H, ZHUANG Z C, CHEN M Z, SUN X H, WANG D S, LI Y D. MOF encapsulating N-heterocyclic carbene-ligated copper singleatom site catalyst towards efficient methane electrosynthesis[J]. Angew. Chem.-Int. Edit., 2022,61(4)e202114450.

    67. [67]

      WANG Q R, YANG X F, ZANG H, CHEN F R, WANG C, YU N, GENG B Y. Metal-organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate[J]. Inorg. Chem., 2022,61(30):12003-12011. doi: 10.1021/acs.inorgchem.2c01961

    68. [68]

      YUE Y, CAI P Y, XU K, LI H Y, CHEN H Z, ZHOU H C, HUANG N. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts[J]. J. Am. Chem. Soc., 2021,143(43):18052-18060. doi: 10.1021/jacs.1c06238

    69. [69]

      HOANG M T, HAN C, MA Z P, MAO X, YANG Y, MADANI S S, SHAW P, YANG Y C, PENG L Y, TOE C Y, PAN J, AMAL R, DU A J, TESFAMICHAEL T, HAN Z J, WANG H X. Efficient CO2 reduction to formate on CsPbI 3 nanocrystals wrapped with reduced graphene oxide[J]. Nano-Micro Lett., 2023,15(1)161. doi: 10.1007/s40820-023-01132-3

    70. [70]

      JIANG K, SANDBERG R B, AKEY A J, LIU X Y, BELL D C, NØRSKOV J K, CHAN K R, WANG H T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction[J]. Nat. Catal., 2018,1(2):111-119. doi: 10.1038/s41929-017-0009-x

    71. [71]

      ZHANG T, TANG Y F, YU M L, LIU S, LIU L B, FU X Z, LUO J L, LIU S B. Smart design strategies of metal-based compounds for electrochemical CO2 reduction: From microscopic structure to atomic level active site[J]. Chem. Catalysis, 2024,4(2)100906. doi: 10.1016/j.checat.2024.100906

    72. [72]

      MA Y B, YU J L, SUN M Z, CHEN B, ZHOU X C, YE C L, GUAN Z Q, GUO W H, WANG G, LU S Y, XIA D S, WANG Y H, HE Z, ZHENG L, YUN Q B, WANG L Q, ZHOU J W, LU P Y, YIN J W, ZHAO Y F, LUO Z B, ZHAI L, LIAO L W, ZHU Z L, YE R Q, CHEN Y, LU Y, XI S B, HUANG B L, LEE C S, FAN Z X. Confined growth of silver copper Janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction[J]. Adv. Mater., 2022,34(19)e2110607. doi: 10.1002/adma.202110607

    73. [73]

      WEI B, XIONG Y S, ZHANG Z Y, HAO J H, LI L H, SHI W D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet[J]. Appl. Catal. B- Environ., 2021,283119646. doi: 10.1016/j.apcatb.2020.119646

    74. [74]

      HAN L, WANG C W, LUO S S, ZHOU Y T, LI B, LIU M. Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO2 reduction[J]. Green Energy Environ., 2023,9(8):1314-1320.

    75. [75]

      GU L, FTOUNI J, CHOWDHURY A D. Evaluating carbon dioxide reduction over copper supported on precipitated calcium carbonate via electrochemical route[J]. Mater. Today Chem., 2023,30101539. doi: 10.1016/j.mtchem.2023.101539

    76. [76]

      ZHANG X H, SUN Z H, JIN R, ZHU C W, ZHAO C L, LIN Y, GUAN Q Q, CAO L N, WANG H W, LI S, YU H C, LIU X Y, WANG L L, WEI S Q, LI W X, LU J L. Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis[J]. Nat. Commun., 2023,14(1)530. doi: 10.1038/s41467-023-36147-2

    77. [77]

      SU X R, WANG C Y, ZHAO F, WEI T X, ZHAO D, ZHANG J T. Size effects of supported Cu based catalysts for the electrocatalytic CO2 reduction reaction[J]. J. Mater. Chem. A, 2023,11(43):23188-23210. doi: 10.1039/D3TA04929A

    78. [78]

      XIONG L K, ZHANG X, CHEN L, DENG Z, HAN S, CHEN Y F, ZHONG J, SUN H, LIAN Y B, YANG B Y, YUAN X Z, YU H, LIU Y, YANG X Q, GUO J, RÜMMELI M H, JIAO Y, PENG Y. Geometric modulation of local CO flux in Ag@Cu2Onanoreactors for steering the CO2RR pathway toward high-efficacy methane production[J]. Adv. Mater., 2021,33(32)2101741. doi: 10.1002/adma.202101741

    79. [79]

      LIU L C, CORMA A. Structural transformations of solid electrocatalysts and photocatalysts[J]. Nat. Rev. Chem., 2021,5(4):256-276. doi: 10.1038/s41570-021-00255-8

    80. [80]

      LI X D, WANG S M, LI L, SUN Y F, XIE Y. Progress and perspective for in situ studies of CO2 reduction[J]. J. Am. Chem. Soc., 2020,142(21):9567-9581.

    81. [81]

      MENDOZA D, DONG S T, LASSALLE-KAISER B. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: Status and perspectives[J]. Curr. Opin. Colloid Interface Sci., 2022,61101635. doi: 10.1016/j.cocis.2022.101635

    82. [82]

      HE Y Z, LIU S S, WANG M F, CHENG Q Y, JI H Q, QIAN T, YAN C L. Advanced in situ characterization techniques for direct observation of gas involved electrochemical reactions[J]. Energy Environ. Mater., 2023,6(6)e12552. doi: 10.1002/eem2.12552

    83. [83]

      CAO X Y, TAN D X, WULAN B, HUI K S, HUI K N, ZHANG J T. In situ characterization for boosting electrocatalytic carbon dioxide reduction[J]. Small Methods, 2021,5(10)2100700. doi: 10.1002/smtd.202100700

    84. [84]

      GONG Y, HE T. Gaining deep understanding of electrochemical CO2RR with in situ/operando techniques[J]. Small Methods, 2023,7(11)2300702. doi: 10.1002/smtd.202300702

    85. [85]

      LEE S H, LIN J C, FARMAND M, LANDERS A T, FEASTER J T, AVILÉS ACOSTA J E, BEEMAN J W, YE Y F, YANO J, MEHTA A, DAVIS R C, JARAMILLO T F, HAHN C, DRISDELL W S. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization[J]. J. Am. Chem. Soc., 2020,143(2):588-592.

    86. [86]

      XU Z Z, LIANG Z B, GUO W H, ZOU R Q. In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts[J]. Coord. Chem. Rev., 2021,436213824. doi: 10.1016/j.ccr.2021.213824

    87. [87]

      HAN Y, XU H Z, LI Q, DU A J, YAN X C. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: A review[J]. Front. Chem., 2023,111286257. doi: 10.3389/fchem.2023.1286257

    88. [88]

      KIM H J, LEE G, OH S H V, STAMPFL C, SOON A. Recalibrating the experimentally derived structure of the metastable surface oxide on copper via machine learning-accelerated in silico global optimization[J]. ACS Nano, 2024,18(5):4559-4569. doi: 10.1021/acsnano.3c12249

    89. [89]

      ZHANG Q M, WANG Z Y, ZHANG H, LIU X H, ZHANG W, ZHAO L B. Micro-kinetic modelling of CO reduction reaction on single atom catalysts accelerated by machine learning[J]. Phys. Chem. Chem. Phys., 2024,26(14):11037-11047. doi: 10.1039/D4CP00325J

    90. [90]

      FENG H S, DING H, HE P N, WANG S, LI Z Y, ZHENG Z K, YANG Y S, WEI M, ZHANG X. Data-driven design of dual-metalsite catalysts for the electrochemical carbon dioxide reduction reaction[J]. J. Mater. Chem. A, 2022,10(36):18803-18811. doi: 10.1039/D2TA04556G

    91. [91]

      ZHAI Z B, YAN W, DONG L, DENG S Q, WILKINSON D P, WANG X M, ZHANG L, ZHANG J J. Catalytically active sites of MOF derived electrocatalysts: Synthesis, characterization, theoretical calculations, and functional mechanisms[J]. J. Mater. Chem. A, 2021,9(36):20320-20344. doi: 10.1039/D1TA02896K

    92. [92]

      ZHENG Y B, ZHANG Q, SHI J, LI J L, MEI S N, YU Q W, YANG J M, LÜ J. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022,41(3):1209-1223.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(3)
  • Abstract views(407)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return