Citation: Zhiwen HUANG, Qi LIU, Jianping LANG. W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184 shu

W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses

Figures(5)

  • The precursor cluster [Et4N][Tp*WS3(CuCl)3] was treated with silver trifluoromethane sulfonate (AgOTf), followed by the assembly with three bridging ligands 2, 5-di(pyridin-4-yl)thiophene (L1), 5, 5'-bis(4-pyridinyl)-2, 2'-bi- thiophene (L2), and 2, 7-di(4-pyridinyl)pyrene (L3), resulting in three cationic W/Cu/S cluster-based supramolecular macrocycles [(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)(L1)]2(OTf)2(1), [(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)(L2)]2(OTf)2·2CHCl3(2·2CHCl3), and [(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)(L3)]2(OTf)2·2DMF (3·2DMF), respectively. Structural characterizations including single-crystal X-ray diffraction, NMR spectroscopy, mass spectrometry, IR spectroscopy, UV-Vis spectroscopy, and elemental analysis were carried out for these compounds. X-ray analysis revealed that the main backbones of the three macrocycles are composed of a pair of L1, L2, or L3 ligands and three chlorine-bridged [(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)]2+ cationic cluster cores. And they form 3D structures by stacking in different ways. The 1H NMR and electrospray ionization time- of-flight mass spectrometry (ESI-TOF MS) results indicated their good stability in solution. These three compounds exhibited enhanced third-order nonlinear optical properties in DMF compared to the precursor [Et4N][Tp*WS3(CuCl)3].
  • 加载中
    1. [1]

      BROWN C J, TOSTE F D, BERGMAN R G, RAYMOND K N. Supramolecular catalysis in metal-ligand cluster hosts[J]. Chem. Rev., 2015,115(9):3012-3035. doi: 10.1021/cr4001226

    2. [2]

      CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination: Self-assembly of finite two and three-dimensional ensembles[J]. Chem. Rev., 2011,111(11):6810-6918. doi: 10.1021/cr200077m

    3. [3]

      COOK T R, STANG P J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination[J]. Chem. Rev., 2015,115(15):7001-7045. doi: 10.1021/cr5005666

    4. [4]

      COOK T R, ZHENG Y-R, STANG P J. Metal-organic frameworks and self assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal organic materials[J]. Chem. Rev., 2013,113(1):734-777. doi: 10.1021/cr3002824

    5. [5]

      FUJITA D, UEDA Y, SATO S, YOKOYAMA H, MIZUNO N, KUMASAKA T, FUJITA M. Selfassembly of M30L60 icosidodecahedron[J]. Chem, 2016,1(1):91-101. doi: 10.1016/j.chempr.2016.06.007

    6. [6]

      FUJITA M, YAZAKI J, OGURA K. Preparation of a macrocyclic polynuclear complex,[(en) Pd (4, 4'bpy)]4(NO3)8(en=ethylenediamine, bpy=bipyridine), which recognizes an organic molecule in aqueous media[J]. J. Am. Chem. Soc., 1990,112(14):5645-5647. doi: 10.1021/ja00170a042

    7. [7]

      HAN M, ENGELHARD D M, CLEVER G H. Self-assembled coordination cages based on banana shaped ligands[J]. Chem. Soc. Rev., 2014,43(6):1848-1860. doi: 10.1039/C3CS60473J

    8. [8]

      HAN Y F, JIN G X. Half sandwich iridium and rhodium based organometallic architectures: Rational design, synthesis, characterization, and applications[J]. Acc. Chem. Res., 2014,47(12):3571-3579. doi: 10.1021/ar500335a

    9. [9]

      LESCOP C. Coordination-driven syntheses of compact supramolecular metallacycles toward extended metalloorganic stacked supramolecular assemblies[J]. Acc. Chem. Res., 2017,50(4):885-894. doi: 10.1021/acs.accounts.6b00624

    10. [10]

      McCONNELL A J, WOOD C S, NEELAKANDAN P P, NITSCHKE J R. Stimuli responsive metal ligand assemblies[J]. Chem. Rev., 2015,115(15):7729-7793. doi: 10.1021/cr500632f

    11. [11]

      NAKAMURA T, UBE H, SHIRO M, SHIONOYA M. A self-assembled multiporphyrin cage complex through three different zinc (Ⅱ) center formation under well-balanced aqueous conditions[J]. Angew. Chem.-Int. Edit., 2013,52(2):720-723. doi: 10.1002/anie.201208040

    12. [12]

      STANG P J, CAO D H. Transition metal based cationic molecular boxes: Self assembly of macrocyclic platinum (Ⅱ) and palladium (Ⅱ) tetranuclear complexes[J]. J. Am. Chem. Soc., 1994,116(11):4981-4982. doi: 10.1021/ja00090a051

    13. [13]

      STANG P J, OLENYUK B. Self-assembly, symmetry, and molecular architecture: Coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra[J]. Acc. Chem. Res., 1997,30(12):502-518. doi: 10.1021/ar9602011

    14. [14]

      YOSHIZAWA M, KLOSTERMAN J K, FUJITA M. Functional molecular flasks: New properties and reactions within discrete, selfassembled hosts[J]. Angew. Chem.-Int. Edit., 2009,48(19):3418-3438. doi: 10.1002/anie.200805340

    15. [15]

      KAUERHOF D, NIEMEYER J. Functionalized macrocycles in supramolecular organocatalysis[J]. ChemPlusChem, 2020,85(5):889-899. doi: 10.1002/cplu.202000152

    16. [16]

      KUNZ V, SCHULZE M, SCHMIDT D, WÜRTHNER F. Trinuclear ruthenium macrocycles: Toward supramolecular water oxidation catalysis in pure water[J]. ACS Energy Lett., 2017,2(2):288-293. doi: 10.1021/acsenergylett.6b00560

    17. [17]

      SCHULZE M, KUNZ V, FRISCHMANN P D, Wurthner F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem Ⅱ[J]. Nat. Chem., 2016,8(6):576-583. doi: 10.1038/nchem.2503

    18. [18]

      CHEN L J, HUMPHREY S J, ZHU J L, ZHU F F, WANG X Q, WANG X, WEN J, YANG H B, GALE P A. A two dimensional metallacycle cross-linked switchable polymer for fast and highly efficient phosphorylated peptide enrichment[J]. J. Am. Chem. Soc., 2021,143(22):8295-8304. doi: 10.1021/jacs.0c12904

    19. [19]

      CUI P F, LIN Y J, LI Z H, JIN G X. Dihydrogen bond interaction induced separation of hexane isomers by selfassembled carborane metallacycles[J]. J. Am. Chem. Soc., 2020,142(18):8532-8538. doi: 10.1021/jacs.0c03176

    20. [20]

      GUO S T, CUI P F, LIU X R, JIN G X. Synthesis of carborane-backbone metallacycles for highly selective capture of n pentane[J]. J. Am. Chem. Soc., 2022,144(48):22221-22228. doi: 10.1021/jacs.2c10201

    21. [21]

      HU Y X, HAO X, WANG D, ZHANG Z C, SUN H, XU X D, XIE X, SHI X, PENG H, YANG H B, XU L. Light-responsive supramolecular liquid crystalline metallacycle for orthogonal multimode photopatterning[J]. Angew. Chem.-Int. Edit., 2024,63(4)e202315061. doi: 10.1002/anie.202315061

    22. [22]

      HU Y X, HAO X, XU L, XIE X, XIONG B, HU Z, SUN H, YIN G Q, LI X, PENG H, YANG H B. Construction of supramolecular liquidcrystalline metallacycles for holographic storage of colored images[J]. J. Am. Chem. Soc., 2020,142(13):6285-6294. doi: 10.1021/jacs.0c00698

    23. [23]

      JIA P P, XU L, HU Y X, LI W J, WANG X Q, LING Q H, SHI X, YIN G Q, LI X, SUN H, JIANG Y, YANG H B. Orthogonal self-as-sembly of a two-step fluorescence-resonance energy transfer system with improved photosensitization efficiency and photooxidation activity[J]. J. Am. Chem. Soc., 2021,143(1):399-408. doi: 10.1021/jacs.0c11370

    24. [24]

      SHI Z T, HU Y X, HU Z, ZHANG Q, CHEN S Y, CHEN M, YU J J, YIN G Q, SUN H, XU L, LI X, FERINGA B L, YANG H B, TIAN H, QU D H. Visible lightdriven rotation of molecular motors in discrete supramolecular metallacycles[J]. J. Am. Chem. Soc., 2021,143(1):442-452. doi: 10.1021/jacs.0c11752

    25. [25]

      VAJPAYEE V, SONG Y H, COOK T R, KIM H, LEE Y, STANG P J, CHI K W. A unique non catenane interlocked self assembled supramolecular architecture and its photophysical properties[J]. J. Am. Chem. Soc., 2011,133(49):19646-19649. doi: 10.1021/ja208495u

    26. [26]

      SELBY H D, ZHENG Z, GRAY T G, HOLM R H. Bridged multiclusters derived from the face-capped octahedral[Re6(μ3-Se)8]2+ cluster core[J]. Inorg. Chim. Acta, 2001,312(1):205-209.

    27. [27]

      SUDIK A C, MILLWARD A R, OCKWIG N W, CÔTÉ A P, KIM J, YAGHI O M. Design, synthesis, structure, and gas (N2, Ar2, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra[J]. J. Am. Chem. Soc., 2005,127(19):7110-7118. doi: 10.1021/ja042802q

    28. [28]

      SHI S, JI W, TANG S H, LANG J P, XIN X Q. Synthesis and optical limiting capability of cubane like mixed metal clusters (n Bu4N)3[MoAg3BrX3S4](X=Cl and I)[J]. J. Am. Chem. Soc., 1994,116(8):3615-3616. doi: 10.1021/ja00087a064

    29. [29]

      SHI S, JI W, TANG S H, LANG J P, XIN X Q. Synthesis and optical limiting capability of cubane like mixed metal clusters (n Bu4N)3[MoAg3BrX3S4](X=Cl and I)[J]. J. Am. Chem. Soc., 1994,116(8)36153616.

    30. [30]

      BAO S J, XU Z M, JU Y, SONG Y L, WANG H, NIU Z, LI X, BRAUNSTEIN P, LANG J P. The covalent and coordination co-driven assembly of supramolecular octahedral cages with controllable degree of distortion[J]. J. Am. Chem. Soc., 2020,142(31):13356-13361. doi: 10.1021/jacs.0c07014

    31. [31]

      BAO S J, XU Z M, YU T C, SONG Y L, WANG H, NIU Z, LI X, ABRAHAMS B F, BRAUNSTEIN P, LANG J P. Flexible vertex engineers the controlled assembly of distorted supramolecular tetrahedral and octahedral cages[J]. Research, 20229819343.

    32. [32]

      GAO M Y, WANG K, SUN Y, LI D, SONG B Q, ANDALOUSSI Y H, ZAWOROTKO M J, ZHANG J, ZHANG L. Tetrahedral geometry induction of stable Ag Ti nanoclusters by flexible trifurcate TiL3 metalloligand[J]. J. Am. Chem. Soc., 2020,142(29):12784-12790. doi: 10.1021/jacs.0c05199

    33. [33]

      GUANG S Y, YIN S C, XU H Y. The effect of different pi electron conjugation bond structure of molecules on the nonlinear optical properties[J]. J. Funct. Mater., 2006,37(2)325.

    34. [34]

      QIU X T, YAO R, ZHOU W F, LIU M D, LIU Q, SONG Y L, YOUNG D J, ZHANG W H, LANG J P. Rectangle and [2] catenane from cluster modular construction[J]. Chem. Commun., 2018,54(33):4168-4171. doi: 10.1039/C8CC01950A

    35. [35]

      WANG J, SUN Z R, DENG L, WEI Z H, ZHANG W H, ZHANG Y, LANG J P. Reactions of a tungsten trisulfido complex of hydridotris (3, 5-dimethylpyrazol-1-yl) borate (Tp*)[Et4N][Tp*WS3] with CuX (X=Cl, NCS, or CN): Isolation, structures, and third-order NLO properties[J]. Inorg. Chem., 2007,46(26):11381-11389. doi: 10.1021/ic701641h

    36. [36]

      RYAN S T, YOUNG R M, HENKELIS J J, HAFEZI N, VERMEULEN N A, HENNIG A, DALE E J, WU Y, KRZYANIAK M D, FOX A, NAU W M, WASIELEWSKI M R, STODDART J F, SCHERMAN O A. Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems[J]. J. Am. Chem. Soc., 2015,137(48):15299-15307. doi: 10.1021/jacs.5b10329

    37. [37]

      DEMAY-DROUHARD P, BAUMGARTNER T. Highly luminescent 4 pyridylextended dithieno[3, 2 b: 2', 3'd]phospholes[J]. J. Org. Chem., 2020,85(22):14627-14633. doi: 10.1021/acs.joc.0c01369

    38. [38]

      OZORES H L, AMORIN M, GRANJA J R. Self-assembling molecular capsules based on α, γ cyclic peptides[J]. J. Am. Chem. Soc., 2017,139(2):776-784. doi: 10.1021/jacs.6b10456

    39. [39]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2:A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    40. [40]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71(1):3-8.

    41. [41]

      SPEK A L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Crystallogr., 2003,36(1):7-13. doi: 10.1107/S0021889802022112

    42. [42]

      LIU Q, LU M J, YU L C, SONG Y L, LANG J P. Butterfly and nestshaped Tp*-W-Cu-S cluster monomers and dimers with hexamethy-lenetetramine as ligand: Aniondependent structures and nonlinear optical properties[J]. Chin. J. Chem., 2021,39:647-654. doi: 10.1002/cjoc.202000497

    43. [43]

      YU H M, WANG Z K, LI J, SONG Y L, DU M H, LANG J P. Assembly and structure of[WS3Cu2] cluster based supramolecular frame and their third-order nonlinear optical response[J]. . Chinese J. Inorg. Chem., 2024,40(1):71-78.

    44. [44]

      LI J, TAN Y, CAO C, WANG Z K, NIU Z, SONG Y L, LANG J P. Onedimensional and twodimensional coordination polymers from cluster modular construction[J]. CrystEngComm, 2021,23(17):3160-3166. doi: 10.1039/D1CE00206F

    45. [45]

      TAN Y, WANG Z K, LANG F F, YU H M, CAO C, NI C Y, WANG M Y, SONG Y L, LANG J P. Construction of cluster-based supramolecular wire and rectangle[J]. Dalton Trans., 2022,51(16):6358-6365. doi: 10.1039/D2DT00344A

    46. [46]

      SHEIK-BAHAE M, SAID A A, WEI T H, HAGAN D J, STRYLAND E W V. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769. doi: 10.1109/3.53394

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    13. [13]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(1)
  • Abstract views(364)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return