Citation: Hao WANG, Kun TANG, Jiangyang SHAO, Kezhi WANG, Yuwu ZHONG. Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176 shu

Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation

Figures(8)

  • Electro-copolymerized film containing ruthenium complexes as electron-transfer (or redox) mediators and water-oxidation catalysts by an oxidative copolymerization method is presented. The addition of the redox mediator significantly improved the electrocatalytic water-oxidation activity and reduced the overpotential to 220 mV. The prepared electrode showed a water-oxidation catalytic rate constant kobs of 31.7 s-1 and an initial turnover frequency of 1.01 s-1 in 1 000 s by potential electrolysis at 1.7 V applied bias vs NHE (normal hydrogen electrode). The kinetic isotope effect study suggests that the catalytic water oxidation reaction on the electrode surface occurs via a bimolecular coupling mechanism.
  • 加载中
    1. [1]

      Concepcion J J, Jurss J W, Brennaman M K, Hoertz P G, Patrocinio A O T, Murakami Iha N Y, Templeton J L, Meyer T J. Making oxygen with ruthenium complexes[J]. Acc. Chem. Res., 2009,42(12):1954-1965. doi: 10.1021/ar9001526

    2. [2]

      Gersten S W, Samuels G J, Meyer T J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer[J]. J. Am. Chem. Soc., 1982,104(14):4029-4030. doi: 10.1021/ja00378a053

    3. [3]

      Blakemore J D, Schley N D, Balcells D, Hull J F, Olack G W, Incarvito C D, Eisenstein O, Brudvig G W, Crabtree R H. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis[J]. J. Am. Chem. Soc., 2010,132(45):16017-16029. doi: 10.1021/ja104775j

    4. [4]

      Concepcion J J, Jurss J W, Templeton J L, Meyer T J. One site is enough[J]. catalytic water oxidation by[Ru(tpy)(bpm)(OH2)]2+ and[Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc., 2008,130(49):16462-16463.

    5. [5]

      Duan L L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L C. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem Ⅱ[J]. Nat. Chem., 2012,4:418-423. doi: 10.1038/nchem.1301

    6. [6]

      Kärkäs M D, Åkermark T, Chen H, Sun J L, Åkermark B. A tailor-made molecular ruthenium catalyst for the oxidation of water and its deactivation through poisoning by carbon monoxide[J]. Angew. Chem. Int. Ed., 2013,52(15):4189-4193. doi: 10.1002/anie.201210226

    7. [7]

      Zong R F, Thummel R P. A new family of Ru complexes for water oxidation[J]. J. Am. Chem. Soc., 2005,127(37):12802-12803. doi: 10.1021/ja054791m

    8. [8]

      Wasylenko D J, Ganesamoorthy C, Henderson M A, Koivisto B D, Osthoff H D, Berlinguette C P. Electronic modification of the[Ru(tpy)(bpy)(OH2)]2+ scaffold: Effects on catalytic water oxidation[J]. J. Am. Chem. Soc., 2010,132(45):16094-16106. doi: 10.1021/ja106108y

    9. [9]

      Matheu R, Ertem M Z, Pipelier M, Lebreton J, Dubreuil D, Benet- Buchholz J, Sala X, Tessier A, Llobet A. The role of seven-coordination in Ru-catalyzed water oxidation[J]. ACS Catal., 2018,8(3):2039-2048. doi: 10.1021/acscatal.7b03638

    10. [10]

      Sun K, Saadi F H, Lichterman M F, Hale W G, Wang H P, Zhou X H, Plymale N T, Omelchenko S T, He Z H, Papadantonakis K M, Brunschwig B S, Lewis N S. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films[J]. Proc. Natl. Acad. Sci. U. S. A., 2015,112(12):3612-3617. doi: 10.1073/pnas.1423034112

    11. [11]

      Zeng P, Zhou Y, Peng L L, Wang S C, Peng T Y. Architecture modification and In3+-doping of WO3 photoanodes to boost the photoelectrochemical water oxidation performance[J]. Sci. China Chem., 2023,66(11):3269-3279. doi: 10.1007/s11426-023-1691-1

    12. [12]

      ZHANG Y Z, GUO X, SONG X Y, LI X. Advances in non-metallic doping of transition metal electrocatalysts for overall water splitting[J]. Chinese J. Inorg. Chem., 2024,40(2):289-306.

    13. [13]

      FAN M M, WEN X J, TAO Z Y, ZHAO Q, LI J P, LIU G. Construction and photoelectrochemical water oxidation performance of BiVO4/ZnFe2O4 homotypic heterojunction photoanode[J]. Chinese J. Inorg. Chem., 2023,39(1):23-31.

    14. [14]

      Qin L S, Zhang W, Cao R. Hydrophilic MnO2 nanowires coating with o-fluoroaniline for electrocatalytic water oxidation[J]. Chin. J. Struct. Chem., 2023,42(8)100105. doi: 10.1016/j.cjsc.2023.100105

    15. [15]

      Fan X Y, Yuan X J, Zhang K. Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation[J]. Chin. J. Struct. Chem., 2024,43(2)100207. doi: 10.1016/j.cjsc.2023.100207

    16. [16]

      Zhang Y, Wang B, Hu C, Humayun M, Huang Y P, Cao Y L. Negem M, Ding Y G, Wang C D[J]. Fe—Ni—F electrocatalyst for enhancing reaction kinetics of water oxidation. Chin. J. Struct. Chem., 2024,43(2)100243.

    17. [17]

      Wang L, Duan L L, Wang Y, Ahlquist M S G, Sun L C. Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes[J]. Chem. Commun., 2014,50(85):12947-12950. doi: 10.1039/C4CC05069J

    18. [18]

      Joya K S, Subbaiyan N K, D'Souza F, de Groot H J M. Surface-immobilized single-site iridium complexes for electrocatalytic water splitting[J]. Angew. Chem. Int. Ed., 2012,51(38):9601-9605. doi: 10.1002/anie.201203560

    19. [19]

      Chen Z F, Concepcion J J, Jurs J W, Meyer T J. Single-site, catalytic water oxidation on oxide surfaces[J]. J. Am. Chem. Soc., 2009,131(43):15580-15581. doi: 10.1021/ja906391w

    20. [20]

      Youngblood W J, Lee S H A, Kobayashi Y, Hernandez-Pagan E A, Hoertz P G, Moore T A, Moore A L, Gust D, Mallouk T E. Photoassisted overall water splitting in a visible light-absorbing dye- sensitized photoelectrochemical cell[J]. J. Am. Chem. Soc., 2009,131(3):926-927. doi: 10.1021/ja809108y

    21. [21]

      Zhao Y X, Swierk J R, Megiatto J D, Sherman B, Youngblood W J, Qin D D, Lentz D M, Moore A L, Moore T A, Gust D, Mallouk T E. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator[J]. Proc. Natl. Acad. Sci. U. S. A., 2012,109(39):15612-15616. doi: 10.1073/pnas.1118339109

    22. [22]

      Gao Y, Ding X, Liu J H, Wang L, Lu Z K, Li L, Sun L C. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density[J]. J. Am. Chem. Soc., 2013,135(11):4219-4222. doi: 10.1021/ja400402d

    23. [23]

      Wu L, Nayakb A, Shao J, Meyerb T J. Crossing the bridge from molecular catalysis to a heterogenous electrode in electrocatalytic water oxidation[J]. Proc. Natl. Acad. Sci. U. S. A., 2019,116(23):11153-11158. doi: 10.1073/pnas.1902455116

    24. [24]

      Wu L, Eberhart M, Shan B, Nayak A, Brennaman M K, Miller A J M, Shao J, Meyer T J. Stable molecular surface modification of nanostructured, mesoporous metal oxide photoanodes by silane and click chemistry[J]. ACS Appl. Mater. Interfaces, 2019,11(4):4560-4567. doi: 10.1021/acsami.8b17824

    25. [25]

      Alibabaei L, Brennaman M K, Norris M R, Kalanyan B, Song W, Losego M D, Concepcion J J, Binstead R A, Parsons G N, Meyer T J. Solar water splitting in a molecular photoelectrochemical cell[J]. Proc. Natl. Acad. Sci. U. S. A., 2013,110(50):20008-20013. doi: 10.1073/pnas.1319628110

    26. [26]

      Hanson K, Torelli D A, Vannucci A K, Brennaman M K, Luo H, Alibabaei L, Song W, Ashford D L, Norris M R, Glasson C R K, Concepcion J J, Meyer T J. Self-assemble bilayer films of ruthenium(Ⅱ)/polypyridyl complexes through layer-by-layer deposition on nanostructured metal oxides[J]. Angew. Chem. Int. Ed., 2012,51(51):12782-12785. doi: 10.1002/anie.201206882

    27. [27]

      Ding X, Gao Y, Zhang L L, Yu Z, Liu J H, Sun L C. Visible light-driven water splitting in photoelectrochemical cells with supramolecular catalysts on photoanodes[J]. ACS Catal., 2014,4(7):2347-2350. doi: 10.1021/cs500518k

    28. [28]

      Ashford D L, Sherman B D, Binstead R A, Templeton J L, Meyer T J. Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting[J]. Angew. Chem. Int. Ed., 2015,54(16):4778-4781. doi: 10.1002/anie.201410944

    29. [29]

      Wang L, Fan K, Daniel Q, Duan L L, Li F S, Philippe B, Rensmo H, Chen H, Sun J L, Sun L C. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode[J]. Chem. Commun., 2015,51(37):7883-7886. doi: 10.1039/C5CC00242G

    30. [30]

      Li F S, Fan K, Wang L, Daniel Q, Duan L L, Sun L C. Immobilizing Ru(bda) catalyst on a photoanode via electrochemical polymerization for light-driven water splitting[J]. ACS Catal., 2015,5(6):3786-3790. doi: 10.1021/cs502115f

    31. [31]

      Wu L, Brennaman M K, Nayak A, Eberhart M, Miller A J M, Meyer T J. Stabilization of ruthenium(Ⅱ) polypyridyl chromophores on mesoporous TiO2 electrodes: Surface reductive electropolymerization and silane chemistry[J]. ACS Central Sci., 2019,5(3):506-514.

    32. [32]

      Ashford D L, Lapides A M, Vannucci A K, Hanson K, Torelli D A, Harrison D P, Templeton J L, Meyer T J. Water oxidation by an electropolymerized catalyst on derivatized mesoporous metal oxide electrodes[J]. J. Am. Chem. Soc., 2014,136(18):6578-6581.

    33. [33]

      Sherman B D, Ashford D L, Lapides A M, Sheridan M V, Wee K R, Meyer T J. Light-driven water splitting with a molecular electroassembly-based core/shell photoanode[J]. J. Phys. Chem. Lett., 2015,6(16):3213-3217.

    34. [34]

      Zhong Y W, Yao C J, Nie H J. Electropolymerized films of vinyl- substituted polypyridine complexes: Synthesis, characterization, and applications[J]. Coord. Chem. Rev., 2013,257(7/8):1357-1372.

    35. [35]

      Gu C, Huang N, Gao J, Xu F, Xu Y H, Jiang D L. Controlled synthesis of conjugated microporous polymer films: Versatile platforms for highly sensitive and label-free chemo-and biosensing[J]. Angew. Chem. Int. Ed., 2014,53(19):4850-4855.

    36. [36]

      Li M, Li Y F. Solid-phase electrosynthesis[J]. Acc. Chem. Res., 2023,56(24):3694-3703.

    37. [37]

      Shao J Y, Zhong Y W. Stabilization of a cyclometalated ruthenium sensitizer on nanocrystalline TiO2 by an electrodeposited covalent layer[J]. Inorg. Chem., 2019,58(5):3509-3517.

    38. [38]

      Cui B B, Mao Z P, Chen Y X, Zhong Y W, Yu G, Zhan C L, Yao J N. Tuning of resistive memory switching in electropolymerized metallopolymeric films[J]. Chem. Sci., 2015,6(2):1308-1315.

    39. [39]

      Wang J X, Zhang H, Li S M, Ding C J, Zhao Y J, Long X Z, Wei C, Wang Y F, Li Y F, Shen L Y, Cui S X, Hong W J, Li M. Crystalline unipolymer monolayer with high modulus and conductivity[J]. Angew. Chem. Int. Ed., 2022,62(4)e202216838.

    40. [40]

      Zhang J, Du J, Wang J X, Wang Y F, Wei C, Li M. Vertical step-growth polymerization driven by electrochemical stimuli from an electrode[J]. Angew. Chem. Int. Ed., 2018,57(51):16698-16702.

    41. [41]

      Li P, Wang Z X, Song C P, Zhang H Y. Rigid fused p-spacers in D-π-A type molecules for dye-sensitized solar cells: A computational investigation[J]. J. Mater. Chem. C, 2017,5(44)11454.

    42. [42]

      Zhao J, Dang F F, Liu B A, Wu Y, Yang X L, Zhou G J, Wu Z X, Wong W Y. Bis-Zn salphen complexes bearing pyridyl functionalized ligands for efficient organic light-emitting diodes (OLEDs)[J]. Dalton Trans., 2017,46(18):6098-6110.

    43. [43]

      Vannucci A K, Alibabaei L, Losego M D, Concepcion J J, Kalanyan B, Parsons G N, Meyer T J. Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation[J]. Proc. Natl. Acad. Sci. U. S. A., 2013,110(52):20918-20922.

    44. [44]

      Sheridan M V, Sherman B D, Fang Z, Wee K R, Coggins M K, Meyer T J. Electron transfer mediator effects in the oxidative activation of a ruthenium dicarboxylate water oxidation catalyst[J]. ACS Catal., 2015,5(7):4404-4409.

    45. [45]

      Vannucci A K, Hull J F, Chen Z F, Binstead R A, Concepcion J J, Meyer T J. Water oxidation intermediates applied to catalysis: Benzyl alcohol oxidation[J]. J. Am. Chem. Soc., 2012,134(9):3972-3975.

    46. [46]

      Walden A G, Miller A J M. Rapid water oxidation electrocatalysis by a ruthenium complex of the tripodal ligand tris(2-pyridyl)phosphine oxide[J]. Chem. Sci., 2015,6(4):2405-2410.

    47. [47]

      Li A, Zhang Y F, Sun Z C, Niu Z Y, Lan G X. Photosensitizing metal-organic layers for photocatalysis, artificial photosynthesis and fluorescence imaging[J]. Sci. China Chem., 2023,66(12):3372-3382.

    48. [48]

      Romain S, Vigara L, Llobet A. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes[J]. Acc. Chem. Res., 2009,42(12):1944-1953.

    49. [49]

      Duan L L, Tong L P, Xu Y H, Sun L C. Visible light-driven water oxidation: From molecular catalysts to photoelectrochemical cells[J]. Energy Environ. Sci., 2011,4(9):3296-3313.

    50. [50]

      Jiang Y, Li F, Zhang B B, Li X N, Wang X H, Huang F, Sun L C. Promoting the activity of catalysts for the oxidation of water with bridged dinuclear ruthenium complexes[J]. Angew. Chem. Int. Ed., 2013,25(12):3398-3401.

    51. [51]

      Zhang L L, Gao Y, Ding X, Yu Z, Sun L C. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation[J]. ChemSusChem, 2014,7(10):2801-2804.

    52. [52]

      Duan L L, Fischer A, Xu Y H, Sun L C. Isolated seven-coordinate Ru(Ⅳ) dimer complex with[HOHOH]- bridging ligand as an intermediate for catalytic water oxidation[J]. J. Am. Chem. Soc., 2009,131(30):10397-10399.

  • 加载中
    1. [1]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    2. [2]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    3. [3]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    4. [4]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    5. [5]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    6. [6]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    7. [7]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    8. [8]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    11. [11]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    15. [15]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    16. [16]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    17. [17]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    18. [18]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    19. [19]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    20. [20]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

Metrics
  • PDF Downloads(3)
  • Abstract views(316)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return