Citation: Zhiwen HU, Ping LI, Yulong YANG, Weixia DONG, Qifu BAO. Morphology effects on the piezocatalytic performance of BaTiO3[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172 shu

Morphology effects on the piezocatalytic performance of BaTiO3

  • Corresponding author: Weixia DONG, weixia_dong@sina.com
  • Received Date: 21 May 2024
    Revised Date: 12 November 2024

Figures(8)

  • BaTiO3 powers with different morphologies, including nanoparticles, cubes, wires, and sheets were synthesized. The morphology and phase structure of as-synthesized samples were characterized by scanning electron microscopy (SEM), X ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and UV visible(UV Vis) absorption spectra. The piezocatalytic activity of BaTiO3 under different morphologies and catalytic conditions was compared, and the mechanism of differential piezocatalytic activity was explained based on finite element method simulation. The results show that the higher activity of BaTiO3 nanosheets is due to the generated higher potential. The degradation of rhodamine B (RhB) dyes by BaTiO3 nanosheets showed better catalytic activity when the solid content was 2 g·L-1, the ultrasonic frequency was 40 kHz and the dye mass concentration was 5 mg·L-1. Furthermore, the mechanism of piezocatalysis reveals that the hydroxyl radical (·OH) and superoxide radicals (·O2-) are the main reactive species in the degradation process by targeting the degradation of RhB.
  • 加载中
    1. [1]

      LIU J H, QIU W L, XU M M, THOMAS T J, LIU S Q, YANG M H. Piezocatalytic techniques in environmental remediation[J]. Angew. Chem.-Int. Edit., 2023,62(5)e202213927. doi: 10.1002/anie.202213927

    2. [2]

      TU S C, GUO Y X, ZHANG Y H, HU C P, ZHANG T R, MA T Y, HUANG H W. Piezocatalysis and piezo-photocatalysis: Catalysts clas-sification and modification strategy, reaction mechanism, and practical application[J]. Adv. Funct. Mater., 2020,30(48)2005158. doi: 10.1002/adfm.202005158

    3. [3]

      WU J, QIN N, BAO D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018,45:44-51. doi: 10.1016/j.nanoen.2017.12.034

    4. [4]

      XU X L, WU Z, XIAO L B, JIA Y M, MA J P, WANG F F, WANG L, WANG M S, HUANG H T. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. J. Alloy. Compd., 2018,762:915-921. doi: 10.1016/j.jallcom.2018.05.279

    5. [5]

      ZHENG S, DING B F, QIAN X, YANG Y M, MAO L, ZHENG S K, ZHANG J Y. High efficiency degradation of tetracycline and rhodamine B using Z-type BaTiO3/γ-Bi2O3 heterojunction[J]. Sep. Purif. Technol., 2021,278119666. doi: 10.1016/j.seppur.2021.119666

    6. [6]

      HUANG R, WU J, LIN E Z, KANG Z H, QIN N, BAO D H. A new strategy for large-scale synthesis of Na0.5Bi0.5TiO3 nanowires and their application in piezocatalytic degradation[J]. Nanoscale Adv., 2021,3(11):3159-3166. doi: 10.1039/D1NA00024A

    7. [7]

      XU S Y, GUO L M, SUN Q J, WANG Z L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures[J]. Adv. Funct. Mater., 2019,29(13)1808737. doi: 10.1002/adfm.201808737

    8. [8]

      ZHAO W, ZHANG Q, WANG H G, RONG J C, LEI E, DAI Y J. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy, 2020,73104783. doi: 10.1016/j.nanoen.2020.104783

    9. [9]

      TANG Q, WU J, KIM D H, FRANCO C, TERZOPOULOU A, VECIANA A, LUIS J P, CHEN X Z, BRADLEY J N, SALVADOR P. Enhanced piezocatalytic performance of BaTiO3 nanosheets with highly exposed {001} facets[J]. Adv. Funct. Mater., 2022,32(35)2202180. doi: 10.1002/adfm.202202180

    10. [10]

      HU Z W, DONG W X, BAO Q F, LI P. Preparation and piezocatalytic properties of Rubik's cube-like nano-microstructure BaTiO3[J]. Chinese J. Inorg. Chem., 2023,39(3):475-484. doi: 10.11862/CJIC.2023.013

    11. [11]

      YUAN B W, WU J, QIN N, LIN E Z, BAO D H. Enhanced piezocata-lytic performance of (Ba, Sr) TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018,1(9):5119-5127. doi: 10.1021/acsanm.8b01206

    12. [12]

      WANG L Q, KANG H M, Li K Y, XUE D F, LIU C H. Phase evolution of BaTiO 3 nanoparticles: An identification of BaTi2O5 intermediate phase in calcined stearic acid gel[J]. J. Phys. Chem. C, 2008,112:2382-2388.

    13. [13]

      NI Y H, ZHENG H S, XIANG N N, YUAN K F, HONG J M. Simple hydrothermal synthesis and photocatalytic performance of coral-like BaTiO 3 nanostructures[J]. RSC Adv., 2015,5:7245-7252. doi: 10.1039/C4RA13642J

    14. [14]

      WANG L L, LI H, ZHANG S F, LONG Y J, LI L X, ZHENG Z G, WU S L, ZHOU L T, HEI Y R, LUO L J, JIANG F Z. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method[J]. Solid State Sci., 2020,100106098. doi: 10.1016/j.solidstatesciences.2019.106098

    15. [15]

      LI M, GU L L, LI T, HAO S J, TAN F R, CHEN D L, ZHU D L, XU Y J, SUN C H, YANG Z Y. TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application[J]. Crystals, 2020,10(3)202. doi: 10.3390/cryst10030202

    16. [16]

      RAO F, ZHU G Q, ZHANG W B, GAO J Z, ZHANG F C, HUANG Y, HOJAMBERDIEV M. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal[J]. Appl. Catal. B-Environ., 2021,281119481. doi: 10.1016/j.apcatb.2020.119481

    17. [17]

      GUPTA Y, ARUN P, NAUDI A A, WALZ M V, ALBANESI E A. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films[J]. Thin Solid Films, 2016,612:310-316. doi: 10.1016/j.tsf.2016.05.056

    18. [18]

      WANG S S, WU Z, CHEN J, MA J P, YING J S, CUI S C, YU S G, HU Y M, ZHAO J H, JIA Y M. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceram. Int., 2019,45:11703-11708. doi: 10.1016/j.ceramint.2019.03.045

    19. [19]

      YOU H L, MA X X, Wu Z, FEI L F, CHEN X Q, YANG J, LIU Y S, JIA Y M, LI H M, WANG F F, HUANG H T. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyrobi-catalytic dye decomposition of NaNbO3 nanofibers[J]. Nano Energy, 2008,52:351-359.

    20. [20]

      LING J S, WANG K, WANG Z Y, HUANG H T, ZHANG G K. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration[J]. Ultrason. Sonochem., 2020,61104819. doi: 10.1016/j.ultsonch.2019.104819

    21. [21]

      WU J, XU Q, LIN E Z, YUAN B W, QIN N, TAHTIKONDA S K, BAO D H. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17842-17849. doi: 10.1021/acsami.8b01991

    22. [22]

      YU C Y, TAN M X, LI Y, LIU C B, YIN R W, MENG H M, SU Y J, QIAO L J, BAI Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. J. Colloid Interface Sci., 2021,596:288-296. doi: 10.1016/j.jcis.2021.03.040

    23. [23]

      ZHOU X F, WU S H, LI C B, YAN F, BAI H R, SHEN B, ZENG H R, ZHAI J W. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation[J]. Nano Energy, 2019,66104127. doi: 10.1016/j.nanoen.2019.104127

    24. [24]

      SAKTHIVEL T, VENUGOPAL G, DURAIRAJ A, VASANTHKUMAR S, HUANG X Y. Utilization of the internal electric field in semicon-ductor photocatalysis: A short review[J]. J. Ind. Eng. Chem., 2019,72:18-30. doi: 10.1016/j.jiec.2018.12.034

    25. [25]

      LIU D M, JIN C C, SHAN F K, HE J J, WANG F. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17443-17451. doi: 10.1021/acsami.9b23351

    26. [26]

      RAY S K, CHO J, HUR J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment[J]. J. Environ. Manage., 2021,290112679. doi: 10.1016/j.jenvman.2021.112679

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(2)
  • Abstract views(603)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return