Citation: Jiahong ZHENG, Jingyun YANG. Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170 shu

Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires

  • Corresponding author: Jiahong ZHENG, jhzheng@chd.edu.cn
  • Received Date: 14 May 2024
    Revised Date: 17 July 2024

Figures(7)

  • Using ultra-long MnO2 nanowires as templates and ZIF-67 as precursors, hollow bead string structured MnO2/CoNi2S4 was prepared via a simple room temperature stirring method and one-step vulcanization. In the unique structure, the ultra-long MnO2 nanowires provide a direct pathway for electron transfer, and their largeaspect ratio is conducive to the formation of self-supporting three-dimensional conductive network structure; the hollow and porous CoNi2S4 provides richer active sites and mitigates the charging and discharging process of the volume change during charging and discharging. Thanks to the above advantages, MnO2/CoNi2S4 had a specific capacitance value of 1 531.1 F·g-1 at 1 A·g-1 and a capacitance retention rate of 86.9% at 10 A·g-1. Using MnO2/CoNi2S4 as the positive electrode and activated carbon (AC) as the negative electrode, the assembled MnO2/CoNi2S4||AC devices achieved high energy density (40 Wh·kg-1 at 800 W·kg-1) and excellent cycling stability (64.8% retention after 5 000 cycles).
  • 加载中
    1. [1]

      Li C Y, Wang J, Yan Y, Huo P W, Wang X K. MOF-derived NiZnCo-P nano-array for asymmetric supercapacitor. Chem. Eng. J. , 2022, 446: 137108

    2. [2]

      Du X M, Ren X L, Xu C J, Chen H Y. Recent advances on the manganese cobalt oxides as electrode materials for supercapacitor applications: A comprehensive review. J. Energy Storage, 2023, 68: 107672

    3. [3]

      Yu Z N, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. , 2015, 8(3): 702-730

    4. [4]

      Zuo W H, Li R Z, Zhou C, Li Y Y, Xia J L, Liu J P. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. , 2017, 4(7): 1600539

    5. [5]

      Zhang S F, Ren J, Gu T, Guo H, Wang H Q, Imran M, Ren R P, Lv Y K. Porous NiCoS nanosheets decorated activated carbon cloth for flexible asymmetric supercapacitors. Diamond Relat. Mater., 2022, 127: 109154

    6. [6]

      Dai T T, Cai B, Yang X J, Jiang Y, Wang L Y, Wang J S, Li X S, Lü W. Asymmetric supercapacitors based on SnNiCoS ternary metal sulfide electrodes. Nanotechnology, 2023, 34(22): 225401

    7. [7]

      Li L S, Pang S H, Fan X, Wang Y F, Cheng H, Fang D, Qin L, Deng M, Lu Z G. High-performance 2.5 V aqueous asymmetric supercapacitor based on MnO2 nanowire/hierarchical porous carbon composite. Mater. Technol., 2022, 37(8): 780-788

    8. [8]

      He W, Wang C G, Li H Q, Deng X L, Xu X J, Zhai T Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater., 2017, 7(21): 1700983

    9. [9]

      Tseng S F, Lin J Y, Lin J Y. High-performance flexible asymmetric supercapacitors based on hy-NiCoS/CNTs composites on porous graphene films. Energy, 2024, 291: 130365

    10. [10]

      Song J, Du L J, Wang J G, Zhang H P, Zhang Y D, Li B B, Zhang Z X, Li T B, Luo J J. NiS nanosheets synthesized by one-step microwave for high-performance supercapacitor. Funct. Mater. Lett., 2021, 14(8): 2150035

    11. [11]

      Zhu J, Xiang L, Xi D, Zhou Y Z, Yang J. One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors. Bull. Mater. Sci., 2018, 41(2): 1-6

    12. [12]

      Rauf M, Shah S S, Shah S K, Shah S N A, Ul Haq T, Shah J, Ullah A, Ahmad T, Khan Y, Aziz M A, Hayat K. Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. J. Saudi. Chem. Soc., 2022, 26(4): 101514

    13. [13]

      Heydari H, Moosavifard S E, Shahraki M, Elyasi S. Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes. J. Energy Chem., 2017, 26(4): 762-767

    14. [14]

      Zhou A, Chi R T, Liu R, Shi Y J, Zhang Z X, Che H W, Wang G S, Mu J B, Wang Y M, Zhang X R. Se-doped nickel-cobalt sulfide nanotube arrays with 3D networks for high-performance hybrid supercapacitor. Ceram. Int., 2022, 48(20): 30536-30545

    15. [15]

      Siwatch P, Sharma K, Manyani N, Kaur R, Tripathi S K. Three dimensional hollow sulphide nanocomposites for supercapacitor electrodes. Curr. Appl. Phys., 2023, 53: 25-38

    16. [16]

      Xiao T, Li J, Zhuang X Y, Zhang W, Wang S L, Chen X L, Xiang P, Jiang L H, Tan X Y. Wide potential window and high specific capacitance triggered via rough NiCo2S4 nanorod arrays with open top for symmetric supercapacitors. Electrochim. Acta, 2018, 269: 397-404

    17. [17]

      Li X S, Fu Y, Ma H, Liu X L, Li L N, Ma J, Liang C J, Jin M, Hua Y J, Wang C T. Preparation of a hollow cube NiCo2S4 and its application in supercapacitor. J. Chem. Sci., 2020, 132(1): 1-11

    18. [18]

      Jia H N, Wang Z Y, Zheng X H, Cai Y F, Lin J H, Liang H Y, Qi J L, Cao J, Feng J C, Fei W D. Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim. Acta, 2019, 312: 54-61

    19. [19]

      Zhou H J, Zhu G Y, Dong S Y, Liu P, Lu Y Y, Zhou Z, Cao S, Zhang Y Z, Pang H. Ethanol-induced Ni2+ intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater., 2023, 35(19): 2211523

    20. [20]

      Yu D B, Wu B, Ge L, Wu L, Wang H T, Xu T W. Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance. J. Mater. Chem. A, 2016, 4(28): 10878-10884

    21. [21]

      Guo Q, Zeng W, Liu S L, Li Y Q. In situ formation of Co3O4 hollow nanocubes on carbon cloth-supported NiCo2O4 nanowires and their enhanced performance in non-enzymatic glucose sensing. Nanotechnology, 2020, 31(26): 265501

    22. [22]

      Wang M X, Zhang J, Yi X B, Liu B X, Zhao X F, Liu X C. High- performance asymmetric supercapacitor made of NiMoO4 nanorods@ Co3O4 on a cellulose-based carbon aerogel. Beilstein J. Nanotechnol., 2020, 11: 240-251

    23. [23]

      Liang H W, Liu J W, Qian H S, Yu S H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res., 2013, 46(7): 1450-1461

    24. [24]

      Zhang L Y, Yin J S, Yu W, Wang M Z, Xie H Q. Great thermal conductivity enhancement of silicone composite with ultra-long copper nanowires. Nanoscale Res. Lett., 2017, 12(1): 462

    25. [25]

      Singu B S, Hong S E, Yoon K R. Ultra-thin and ultra-long α-MnO2 nanowires for pseudocapacitor material. J. Solid State Electrochem., 2017, 21(11): 3215-3220

    26. [26]

      Guo X F, Yu X L, Sun L D, Chen L Q, Liu C, Zhang S D, Wang Z Y, Chen L L, Li N. Electrochemically exfoliated graphene/manganese dioxide nanowire composites as electrode materials for flexible supercapacitors. Aust. J. Chem., 2020, 74(3): 192-198

    27. [27]

      Luo H, Wang B, Liu T, Jin F, Dou S, Wang C Y, Ji C H, Zhou Y, Wang D L. Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Mater., 2019, 19: 370-378

    28. [28]

      Chen Y X, Jing C, Fu X, Shen M, Li K L, Liu X Y, Yao H C, Zhang Y X, Yao K X. Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chem. Eng. J., 2020, 384: 12367

    29. [29]

      Alsaiari M, Imran M, Afzal A M, Iqbal M W, Algethami J S, Harraz F A. Effect of MoS2 and electrolyte temperature on the electrochemical performance of NiCoS@rGO-based electrode material for energy storage, oxygen reduction reaction and electrochemical glucose sensor. Mater. Today Chem., 2024, 35: 101909

    30. [30]

      Lian S T, Sun C L, Xu W N, Huo W C, Luo Y Z, Zhao K N, Yao G, Xu W W, Zhang Y X, Li Z, Yu K S, Zhao H, Cheng H B, Zhang J J, Mai L Q. Built-in oriented electric field facilitating durable Zn-MnO2 battery. Nano Energy, 2019, 62: 79-84

    31. [31]

      Zhu J S, Han C C, Song X Y. Facile synthesis of novel CoNi2S4/ carbon nanofibers composite for high-performance supercapacitor. Mater. Chem. Phys., 2022, 283: 126038

    32. [32]

      Guo Q H, Wu T T, Liu L J, He Y, Liu D, You T Y. Hierarchically porous NiCo2S4 nanowires anchored on flexible electrospun graphitic nanofiber for high-performance glucose biosensing. J. Alloy. Compd., 2020, 819: 153376

    33. [33]

      Li X, Kou Z K, Xi S B, Zang W J, Yang T, Zang W J, Zhang L, Wang J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy, 2020, 78: 105230

    34. [34]

      Jing C, Guo X L, Xia L H, Chen Y X, Wang X, Liu X Y, Dong B Q, Dong F, Li S C, Zhang Y X. Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P Co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chem. Eng. J., 2020, 379: 122305

    35. [35]

      Su C, Xu S S, Zhang L, Chen X W, Guan G Q, Hu N T, Su Y J, Zhou Z H, Wei H, Yang Z, Qin Y. Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors. Electrochim. Acta, 2019, 305: 81-89

    36. [36]

      Zhu J S, Han C C, Song X Y. Facile synthesis of novel CoNi2S4/carbon nanofibers composite for high-performance supercapacitor. Mater. Chem. Phys., 2022, 283: 126038

    37. [37]

      Wu L J, Lang J W, Wang S A, Zhang P, Yan X B. Study of Ni-dopped MnCo2O4 yolk-shell submicron-spheres with fast Li+ intercalation pseudocapacitance as an anode for high-performance lithium ion batteries. Electrochim. Acta, 2016, 203: 128-135

    38. [38]

      Li S Z, Wen J, Mo X M, Long H, Wang H N, Wang J B, Fang G J. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources, 2014, 256: 206-211

    39. [39]

      Zhou Y, Jia Z X, Zhao S Y, Chen P, Fu Y N, Guo T, Wei L Y, Cui X M. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors. Chem. Eng. J., 2021, 416(11): 129500

    40. [40]

      Beka L G, Li X, Xia X, Liu W. 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond Relat. Mater., 2017, 73: 169-176

    41. [41]

      Xie M, Lin M X, Feng C, Liu Z J, Xu Y C, Wang N A, Zhang X, Jiao Y, Chen J R. Coupling Zn2+ doping and rich oxygen vacancies in MnO2 nanowire toward advanced aqueous zinc-ion batteries. J. Colloid Interface Sci., 2023, 645: 400-409

    42. [42]

      Tsai K J, Ni C S, Chen H Y, Huang J H. Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices. J.Power Sources, 2020, 454: 227912

    43. [43]

      Li C, Balamurugan J, Kim N H, Lee J H. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. Adv. Energy Mater., 2018, 8(8): 1-12

    44. [44]

      Xiong X B, Chen J, Zhang D, Li A J, Zhang J J, Zeng X R. Hetero-structured nanocomposites of Ni/Co/O/S for high-performance pseudo-supercapacitors. Electrochim. Acta, 2019, 299: 298-311

    45. [45]

      Bredar A R C, Chown A L, Burton A R, Farnum B H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater., 2020, 3(1): 66-98

    46. [46]

    47. [47]

      Yu G G, Wu L, Huang S J, Zhao, W N, Han L. Integrated design and construction of the NiMoS4@Co9S8/Ni3S2 hollow core-shell heterostructure for high-performance asymmetric supercapacitors. New J. Chem., 2024, 48: 4155-4164

    48. [48]

      Ravisankar D, Geetha D, Ramesh P S, Vinothkumar V. Novel surface-enriched spiky ball with spines NiCo2S4@GO/CNT electrode material for a high-performance flexible asymmetric supercapacitor. ECS J. Solid State Sci. Technol., 2024, 13(1): 011001

    49. [49]

      Dond Y X, Yue X Q, Liu Y, Zheng Q. Hierarchical core-shell-structured bimetallic nickel-cobalt phosphide nanoarrays coated with nickel sulfide for high-performance hybrid supercapacitors. J. Colloid Interface Sci., 2022, 628: 222-232

    50. [50]

      Feng Z W, Zou H B, Yang W, Peng Z, Chen S Z. Facile synthesis of heterogeneous Co3S4@Ni3S4 nanoflower arrays on Ni foam for high-performance asymmetric all-solid-state supercapacitors. J. Alloy. Compd., 2021, 862: 158586

    51. [51]

      Zhao X Y, Ma Q X, Tao K, Han L. ZIF-Derived porous CoNi2S4 on intercrosslinked polypyrrole tubes for high-performance asymmetric supercapacitors. ACS Appl. Energy Mater., 2021, 4(4): 4199-4207

    52. [52]

      Chen Y X, Jing C, Fu X, Shen M, Li K L, Liu X Y, Yao H C, Zhang Y X, Yao K X. Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chem. Eng. J., 2020, 384: 123367

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    3. [3]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(8)
  • Abstract views(544)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return