Citation: Yang WANG, Xiaoqin ZHENG, Yang LIU, Kai ZHANG, Jiahui KOU, Linbing SUN. Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165 shu

Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance

Figures(13)

  • A simple strategy was adopted to prepare single-atom catalysts (SACs) using mesoporous silica KIT- 6 (TOK) without templating agent removal as a carrier and utilizing the confined space between the templating agent and the silica wall. After the Mn-containing precursor was introduced into the confined space of TOK by solid-phase milling, Mn SACs can be rapidly generated during the calcination. Density functional theory calculations and experimental data indicate that the Mn atoms are anchored by Si—OH groups on the carriers and exist as Mn—O—Si. The obtained Mn SACs were applied to the electrocatalytic oxygen evolution reaction, and the experimental results show that the Mn SACs exhibit better catalytic performance than the comparison samples synthesized in a carrier without confined space.
  • 加载中
    1. [1]

      Cheng N C, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7(1):13638-13647. doi: 10.1038/ncomms13638

    2. [2]

      Di J, Chen C, Yang S Z, Chen S M, Duan M L, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen H L, Weng Y X, Xia J X, Song L, Li S Z, Li H M, Liu Z. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction[J]. Nat. Commun., 2019,10:2840-2847. doi: 10.1038/s41467-019-10392-w

    3. [3]

      Han G K, Zhang X, Liu W, Zhang Q H, Wang Z Q, Cheng J, Yao T, Gu L, Du C Y, Gao Y Z, Yin G P. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites[J]. Nat. Commun., 2021,12(1):6335-6344. doi: 10.1038/s41467-021-26747-1

    4. [4]

      Lee B H, Park S, Kim M, Sinha A K, Lee S C, Jung E, Chang W J, Lee K S, Kim J H, Cho S P, Kim H, Nam K T, Hyeon T. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts[J]. Nat. Mater., 2019,18(6):620-626. doi: 10.1038/s41563-019-0344-1

    5. [5]

      Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nat. Nanotechnol., 2018,13(9):856-861. doi: 10.1038/s41565-018-0197-9

    6. [6]

      Tang J, Robichaux M A, Wu K L, Pei J Q, Nguyen N T, Zhou Y B, Wensel T G, Xiao H. Single-atom fluorescence switch: A general approach toward visible-light-activated dyes for biological imaging[J]. J. Am. Chem. Soc., 2019,141(37):14699-14706. doi: 10.1021/jacs.9b06237

    7. [7]

      Jiao L, Zhang R, Wan G, Yang W J, Wan X, Zhou H, Shui J L, Yu S H, Jiang H L. Nanocasting SiO2 into metal‑organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts[J]. Nat. Commun., 2020,11(1):2831-2838. doi: 10.1038/s41467-020-16715-6

    8. [8]

      He X H, Deng Y C, Zhang Y, He Q, Xiao D Q, Peng M, Zhao Y, Zhang H, Luo R C, Gan T, Ji H B, Ma D. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Rep. Phys. Sci., 2020,1(1):100004-100016. doi: 10.1016/j.xcrp.2019.100004

    9. [9]

      Sui J F, Liu H, Hu S J, Sun K, Wan G, Zhou H, Zheng X, Jiang H L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis[J]. Adv. Mater., 2021,34(6)2109203.

    10. [10]

      Zhou H, Zhao Y F, Gan J, Xu J, Wang Y, Lv H W, Fang S, Wang Z Y, Deng Z L, Wang X Q, Liu P G, Guo W X, Mao B Y, Wang H, Yao T, Hong X, Wei S Q, Duan X Z, Luo J, Wu Y. Cation-exchange induced precise regulation of single copper site triggers room‑ temperature oxidation of benzene[J]. J. Am. Chem. Soc., 2020,142(29):12643-12650. doi: 10.1021/jacs.0c03415

    11. [11]

      Liu Y W, Wu X, Li Z, Zhang J, Liu S X, Liu S J, Gu L, Zheng L R, Li J, Wang D S, Li Y D. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration[J]. Nat. Commun., 2021,12(1):4205-4214. doi: 10.1038/s41467-021-24513-x

    12. [12]

      Zheng X Q, Zhang K, Wang Y, Liu Y, Peng S S, Shao X B, Kou J, Sun L B. Construction of nickel single atoms by using the inherent confined space in template-occupied mesoporous silica[J]. Inorg. Chem., 2024,63(18):8312-8319. doi: 10.1021/acs.inorgchem.4c00626

    13. [13]

      Gu M X, Zheng X Q, Peng S S, Qi S C, Liu X Q, Sun L B. Fabrication of Fe single atoms by utilizing the inherent confined space for phenol hydroxylation[J]. ACS Sustain. Chem. Eng., 2023,11(20):7844-7850. doi: 10.1021/acssuschemeng.3c00856

    14. [14]

      Song W Q, Xiao C X, Ding J, Huang Z C, Yang X Y, Zhang T, Mitlin D, Hu W B. Review of carbon support coordination environments for single metal atom electrocatalysts (SACs)[J]. Adv. Mater., 2023,36(1):2301477-2301531.

    15. [15]

      Jeong H, Shin S, Lee H. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts[J]. ACS Nano, 2020,14(11):14355-14374. doi: 10.1021/acsnano.0c06610

    16. [16]

      Sarma B B, Plessow P N, Agostini G, Concepción P, Pfänder N, Kang L, Wang F R, Studt F, Prieto G. Metal-specific reactivity in single-atom catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO[J]. J. Am. Chem. Soc., 2020,142(35):14890-14902. doi: 10.1021/jacs.0c03627

    17. [17]

      Zhu Z J, Yin H J, Wang Y, Chuang C H, Xing L, Dong M Y, Lu Y R, Casillas Garcia G, Zheng Y L, Chen S, Dou Y H, Liu P, Cheng Q L, Zhao H J. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst[J]. Adv. Mater., 2020,32(42)2004670. doi: 10.1002/adma.202004670

    18. [18]

      Cao L L, Luo Q Q, Liu W, Lin Y K, Liu X K, Cao Y J, Zhang W, Wu Y, Yang J L, Yao T, Wei S Q. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution[J]. Nat. Catal., 2018,2(2):134-141. doi: 10.1038/s41929-018-0203-5

    19. [19]

      Yang Y, Zhang W Y, Tan X H, Jiang K R, Zhai S L, Li Z. Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions[J]. Coord. Chem. Rev., 2023,489:215196-215218. doi: 10.1016/j.ccr.2023.215196

    20. [20]

      Wang M K, Hu Y, Pu J M, Zi Y, Huang W C. Emerging Xene-based single-atom catalysts: Theory, synthesis and catalytic applications[J]. Adv. Mater., 2023,36(3):2303492-2303599.

    21. [21]

      Zheng Y, Qiao S Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications[J]. Natl. Sci. Rev., 2018,5(5):626-627. doi: 10.1093/nsr/nwy010

    22. [22]

      Gu M X, Gao L P, Peng S S, Qi S C, Shao X B, Liu X Q, Sun L B. Transition metal single atoms constructed by using inherent confined space[J]. ACS Nano, 2023,17(5):5025-5032. doi: 10.1021/acsnano.2c12817

    23. [23]

      Liu Y W, Li Z, Yu Q Y, Chen Y F, Chai Z W, Zhao G F, Liu S J, Cheong W C, Pan Y, Zhang Q H, Gu L, Zheng L R, Wang Y, Lu Y, Wang D S, Chen C, Peng Q, Liu Y Q, Liu L M, Chen J S, Li Y D. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite[J]. J. Am. Chem. Soc., 2019,141(23):9305-9311. doi: 10.1021/jacs.9b02936

    24. [24]

      Jiao L, Jiang H L. Metal-organic-framework-based single-atom catalysts for energy applications[J]. Chem, 2019,5(4):786-804. doi: 10.1016/j.chempr.2018.12.011

    25. [25]

      Hülsey M J, Zhang B, Ma Z R, Asakura H, Do D A, Chen W, Tanaka T, Zhang P, Wu Z L, Yan N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation[J]. Nat. Commun., 2019,10(1):1330-1340. doi: 10.1038/s41467-019-09188-9

    26. [26]

      Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J Y. Ultrastable single-atom gold catalysts with strong covalent metal- support interaction (CMSI)[J]. Nano Res., 2015,8(9):2913-2924. doi: 10.1007/s12274-015-0796-9

    27. [27]

      Zhao S, Chen F, Duan S B, Shao B, Li T B, Tang H L, Lin Q Q, Zhang J Y, Li L, Huang J H, Bion N, Liu W, Sun H, Wang A Q, Haruta M, Qiao B T, Li J, Liu J Y, Zhang T. Remarkable active-site dependent H2O promoting effect in CO oxidation[J]. Nat. Commun., 2019,10(1):3824-3834. doi: 10.1038/s41467-019-11871-w

    28. [28]

      Ge X, Su G R, Che W, Yang J, Zhou X, Wang Z Y, Qu Y T, Yao T, Liu W, Wu Y. Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts[J]. ACS Catal., 2020,10(18):10468-10475. doi: 10.1021/acscatal.0c02203

    29. [29]

      Yang Z K, Chen B X, Chen W X, Qu Y T, Zhou F Y, Zhao C M, Xu Q, Zhang Q H, Duan X Z, Wu Y. Directly transforming copper􀃬 oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach[J]. Nat. Commun., 2019,10(1):3734-3741. doi: 10.1038/s41467-019-11796-4

    30. [30]

      Yang Z K, Zhao C M, Qu Y T, Zhou H, Zhou F Y, Wang J, Wu Y, Li Y D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal[J]. Adv. Mater., 2019,31(12)1808043. doi: 10.1002/adma.201808043

    31. [31]

      Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat. Catal., 2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1

    32. [32]

      Zhang L H, Han L L, Liu H X, Liu X J, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angew. Chem. Int. Ed., 2017,56(44):13694-13698. doi: 10.1002/anie.201706921

    33. [33]

      Zhang L Z, Fischer J M T A, Jia Y, Yan X C, Xu W C, Wang X C, Chen J, Yang D J, Liu H W, Zhuang L Z, Hankel M, Searles D J, Huang K K, Feng S H, Brown C L, Yao X D. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2018,140(34):10757-10763. doi: 10.1021/jacs.8b04647

    34. [34]

      Xiang J Q, Zhao H Y, Chen K, Yang X, Chu K. Electrocatalytic nitrite reduction to ammonia on an Rh single‑atom catalyst[J]. J. Colloid Interface Sci., 2024,659:432-438. doi: 10.1016/j.jcis.2024.01.013

    35. [35]

      Liu M H, Zhang J, Su H, Jiang Y L, Zhou W L, Yang C Y, Bo S W, Pan J, Liu Q H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction[J]. Nat. Commun., 2024,15(1):1675-1685. doi: 10.1038/s41467-024-45990-w

    36. [36]

      Pirez C, Caderon J M, Dacquin J P, Lee A F, Wilson K. Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification[J]. ACS Catal., 2012,2(8):1607-1614. doi: 10.1021/cs300161a

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(7)
  • Abstract views(485)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return