Citation: Xiao SANG, Qi LIU, Jianping LANG. Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158 shu

Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands

Figures(7)

  • Solvothermal reactions of 3, 5‐dinitrobenzoic acid (3, 5‐HDNBA), 4‐pyrazolecarboxylic acid (4‐H2PyC) or 4‐ethylbenzoic acid (4‐HEBA) with Zn(NO3)2·6H2O and 1, 2, 4, 5‐tetrakis(4‐vinylpyridyl) benzene (tkpvb) gave rise to three kinds of coordination polymers (CPs), [Zn(tkpvb)(3, 5‐DNBA)2]n (CP1), {[Zn(tkpvb)(4‐PyC)]·2H2O]}n (CP2), and {[Zn(tkpvb)0.5(4‐EBA)2]·H2O}n (CP3). CP1 has a 1D zigzag chain structure composed of Zn(Ⅱ), tkpvb, and 4‐EBA ligands. CP2 is a 3D topological structure that can be seen constructed from 2D [Zn(4‐PyC)3]n layers connected by tkpvb ligands. CP3 holds a 4 ‐ connected 3D topological structure, where 1D channels are present. CP1CP3 showed a fluorescence emission phenomenon, and they had certain responses to inorganic metal ions. Among them, Fe3+ ions had the greatest impact on the fluorescence intensity of CP1. In addition, after the addition of Fe3+, the fluorescence lifetime and fluorescence quantum yield of CP1 were significantly enhanced compared to CP2 and CP3, with a detection limit of 0.020 μmol·L-1. This may be due to the interaction between Fe3+ and the uncoordinated pyridine groups in CP1.
  • 加载中
    1. [1]

      Chen C, Zhang X L, Gao P, Hu M. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions[J]. J. Solid State Chem., 2018,258:86-92. doi: 10.1016/j.jssc.2017.10.004

    2. [2]

      Zhao T, Hou X D, Xie Y N, Wu L, Wu P. Phosphorescent sensing of Cr3+ with protein‐functionalized Mn‐doped ZnS quantum dots[J]. Analyst, 2013,138(21):6589-6594. doi: 10.1039/c3an01213a

    3. [3]

      Chen S G, Shi Z Z, Qin L, Jia H L, Zheng H G. Two new luminescent Cd(Ⅱ)-metal-organic frameworks as bifunctional chemosensors for detection of cations Fe3+, anions CrO42-, and Cr2O72- in aqueous solution[J]. Cryst. Growth Des., 2017,17(1):67-72. doi: 10.1021/acs.cgd.6b01197

    4. [4]

      Ge F Y, Sun G H, Meng L, Ren S S, Zheng H G. Four new luminescent metal‐organic frameworks as multifunctional sensors for detecting Fe3+, Cr2O72- and nitromethane[J]. Cryst. Growth Des., 2020,20(3):1898-1904. doi: 10.1021/acs.cgd.9b01593

    5. [5]

      Lei M Y, Ge F Y, Zheng H G. Stable Cd metal‐organic framework as a multiresponsive luminescent biosensor for rapid, accurate, and recyclable detection of hippuric acid, nucleoside phosphates, and Fe3+ in urine and serum[J]. Inorg. Chem., 2022,61(29):11243-11251. doi: 10.1021/acs.inorgchem.2c01313

    6. [6]

      Bhandary S, Beliš M, Shukla R, Bourda L, Kaczmarek A M, Van Hecke K. Single‐crystal‐to‐single‐crystal photosynthesis of supramolecular organoboron polymers with dynamic effects[J]. J. Am. Chem. Soc., 2024,146(12):8659-8667. doi: 10.1021/jacs.4c00978

    7. [7]

      Rath B B, Vittal J J. Single‐crystal‐to‐single‐crystal[2+2] photocycloaddition reaction in a photosalient one‐dimensional coordination polymer of Pb(Ⅱ).[J]. J. Am. Chem. Soc., 2020,142(47):20117-20123. doi: 10.1021/jacs.0c09577

    8. [8]

      Chu Q, Swenson D C, MacGillivray L R. A single‐crystal‐to‐singlecrystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network[J]. Angew. Chem. Int. Ed., 2005,44(23):3569-3572. doi: 10.1002/anie.200500400

    9. [9]

      Han Y F, Jin G X, Daniliuc C G, Hahn F E. Reversible photochemical modifications in dicarbene-derived metallacycles with coumarin pendants[J]. Angew. Chem. Int. Ed., 2015,54(16):4958-4962. doi: 10.1002/anie.201411006

    10. [10]

      Wang M F, Mi Y, Hu F L, Niu Z, Yin X H, Huang Q, Wang H F, Lang J P. Coordination‐driven stereospecific control strategy for pure cycloisomers in solid‐state diene photocycloaddition[J]. J. Am. Chem. Soc., 2019,142(2):700-704.

    11. [11]

      Wang M F, Mi Y, Hu F L, Hirao H, Niu Z, Braunstein P, Lang J P. Controllable multiple‐step configuration transformations in a thermal/photoinduced reaction[J]. Nat. Commun., 2022,13(1):2847-2855. doi: 10.1038/s41467-022-30597-w

    12. [12]

      Kole G K, Mir M H. Isolation of elusive cyclobutane ligands via a template-assisted photochemical[2+2] cycloaddition reaction and their utility in engineering crystalline solids.[J]. CrystEngComm, 2022,24(22):3993-4007. doi: 10.1039/D2CE00277A

    13. [13]

      Wang J H, Lu T M, Li Y H, Wang J Y, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials[J]. Adv. Colloid Interface Sci., 2023,318102964. doi: 10.1016/j.cis.2023.102964

    14. [14]

      Easmin S, Pedireddi V R. Unusual in situ transformation of metastable cocrystal forms into a stable form, in solution and solid state, and the[2+2] photochemical reactivity in the crystalline forms.[J]. Cryst. Growth Des., 2023,23(4):2802-2811. doi: 10.1021/acs.cgd.3c00004

    15. [15]

      Li X Y, Ma L N, Liu Y, Hou L, Wang Y Y, Zhu Z. Honeycomb metalorganic framework with Lewis acidic and basic bifunctional sites: Selective adsorption and CO2 catalytic fixation[J]. ACS Appl. Mater. Interfaces, 2018,10(13):10965-10973. doi: 10.1021/acsami.8b01291

    16. [16]

      Chen M M, Zhou X, Li H X, Yang X X, Lang J P. Luminescent twodimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water[J]. Cryst. Growth Des., 2015,15(6):2753-2760. doi: 10.1021/acs.cgd.5b00095

    17. [17]

      Fan H W, Gu J H, Meng H, Knebel A, Caro J. High‐flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration[J]. Angew. Chem. Int. Ed., 2018,57(15):4083-4087. doi: 10.1002/anie.201712816

    18. [18]

      Zhang M, Wang L W, Zeng T Y, Shang Q G, Zhou H, Pan Z Q, Cheng Q R. Two pure MOF‐photocatalysts readily prepared for the degradation of methylene blue dye under visible light[J]. Dalton Trans., 2018,47(12):4251-4258. doi: 10.1039/C8DT00156A

    19. [19]

      Wang Y M, Xu Y, Yang Z R, Zhang X, Hu Y, Yang R. Multifunctional lanthanide coordination polymers for multi‐modal detection of nitroaromatics and trace water in organic solvents[J]. J. Colloid Interface Sci., 2021,598(15):474-482.

    20. [20]

      Yuan F L, Yuan Y Q, Chao M Y, Young D J, Zhang W H, Lang J P. Deciphering the structural relationships of five Cd-based metal-organic frameworks[J]. Inorg. Chem., 2017,56(11):6522-6531. doi: 10.1021/acs.inorgchem.7b00592

    21. [21]

      Wang R M, Liu X B, Huang A, Wang W, Xiao Z Y, Zhang L L, Dai F N, Sun D F. Unprecedented solvent-dependent sensitivities in highly efficient detection of metal ions and nitroaromatic compounds by a fluorescent barium metal-organic framework[J]. Inorg. Chem., 2016,55(4):1782-1787. doi: 10.1021/acs.inorgchem.5b02693

    22. [22]

      Hu F L, Shi Y X, Chen H H, Lang J P. A Zn(Ⅱ) coordination polymer and its photocycloaddition product: Syntheses, structures, selective luminescence sensing of iron (Ⅲ) ions and selective absorption of dyes[J]. Dalton Trans., 2015,44(43):18795-18803. doi: 10.1039/C5DT03094C

    23. [23]

      Xue Z Z, Guan Q W, Xu L, Meng X D, Pan J. A Zn(Ⅱ)‐based coordination polymer featuring selective detection of Fe3+ and efficient capture of anionic dyes[J]. Cryst. Growth Des., 2020,20(11):7477-7483. doi: 10.1021/acs.cgd.0c01151

    24. [24]

      Wang L, Tao X T, Yang J X, Yu W T, Ren Y, Xin Q, Liu Z, Jiang M H. Synthesis, structure and two-photon absorption properties of a new multi‐branched compound, 1, 2, 4, 5‐tetrakis(4‐pyridylvinyl)benzene[J]. J. Solid State Chem., 2004,177(11):4293-4299. doi: 10.1016/j.jssc.2004.08.036

    25. [25]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71(1):3-8.

    26. [26]

      Sivagurunathan G S, Ramalingam K, Rizzoli C. Continuous shape measure of electronic effect free steric distortions in tris(dithiocarbamato)indium (Ⅲ) : Synthesis, spectral, electrochemical, single crystal X‐ray structural investigations and BVS calculations on tris(dithiocarbamato)indium(Ⅲ) complexes[J]. Polyhedron, 2014,72(18):96-102.

    27. [27]

      Verma S, Kar P, Das A, Ghosh H N. Photophysical properties of ligand localized excited state in ruthenium(Ⅱ) polypyridyl complexes: A combined effect of electron donor‐acceptor ligand[J]. Dalton Trans., 2011,40(38):9765-9773. doi: 10.1039/c1dt10266d

    28. [28]

      Wang Y N, Li H X, Jia L, Zhang S S, Zhao Y R, Du L, Zhao Q H. Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(Ⅵ) and Fe(Ⅲ) ions in water[J]. Inorg. Chem. Commun., 2019,110107575. doi: 10.1016/j.inoche.2019.107575

    29. [29]

      Zhang X P, Zhao Y Q, Fu L, Cui G H. A luminescent probe based on a Zn(Ⅱ) coordination polymer for efficient detection of tetracycline, Cr2O72- anions[J]. Inorg. Chem. Commun., 2023,148110373. doi: 10.1016/j.inoche.2022.110373

    30. [30]

      Li X X, Xu H Y, Kong F Z, Wang R H. A cationic metalorganic framework consisting of nanoscale cages: Capture, separation, and luminescent probing of Cr2O72- through a single-crystal to single-crystal process[J]. Angew. Chem. Int. Ed., 2013,52(51):13769-13773. doi: 10.1002/anie.201307650

    31. [31]

      Wen L, Zheng X, Lv K, Wang C, Xu X. Two amino‐decorated metalorganic frameworks for highly selective and quantitatively sensing of Hg(Ⅱ) and Cr(Ⅵ) in aqueous solution[J]. Inorg. Chem., 2015,54(15):7133-7135. doi: 10.1021/acs.inorgchem.5b00098

    32. [32]

      Gu T Y, Dai M, Young D J, Ren Z G, Lang J P. Luminescent Zn(Ⅱ) coordination polymers for highly selective sensing of Cr(Ⅲ) and Cr(Ⅵ) in water[J]. Inorg. Chem., 2017,56(8):4668-4678. doi: 10.1021/acs.inorgchem.7b00311

    33. [33]

      Wang J, Yan D, Huang W. A fluorescence zinc metal‐organic framework for the effective detection of Fe3+ and Fe2+ in water[J]. Inorg. Chem. Commun., 2022,138109282. doi: 10.1016/j.inoche.2022.109282

    34. [34]

      Duan X D, Ge F Y, Zheng H G. Two bifunctional photoluminescent Zn(Ⅱ) coordination polymers for detection of Fe3+ ion and nitrobenzene[J]. Inorg. Chem. Commun., 2019,107107479. doi: 10.1016/j.inoche.2019.107479

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    7. [7]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    8. [8]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    9. [9]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(20)
  • Abstract views(845)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return