Citation: Jinlong YAN, Weina WU, Yuan WANG. A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154 shu

A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application

  • Corresponding author: Weina WU, wuwn08@hpu.edu.cn
  • Received Date: 4 May 2024
    Revised Date: 1 July 2024

Figures(7)

  • A simple Schiff base probe, namely 2-(((E)-(3H-benzo[f]chromen-2-yl)methylene)amino)-3-aminomaleonitrile (1), was prepared by the condensation reaction, which was characterized through 1H NMR, 13C NMR, ESI-MS, and single crystal X-ray diffraction. The fluorescence experiments indicated that probe 1 was non-emissive, while hypochlorite (ClO-) could induce a strong emission of the probe at 530 nm. The response of probe 1 toward ClO- was highly sensitive and finished within a few seconds. The ClO--promoted decomposition of probe 1 was suggested by spectral and theoretical methods. Furthermore, the probe was applied to imaging exogenous and endogenous ClO- in living cells, zebrafish, and Arabidopsis thaliana.
  • 加载中
    1. [1]

      Ma C G, Zhong G Y, Zhao Y, Zhang P, Fu Y Q, Shen B X. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite[J]. Spectroc. Acta Pt. A - Molec. Biomolec. Spectr., 2020,240118545. doi: 10.1016/j.saa.2020.118545

    2. [2]

      Hou J T, Kwon N, Wang S, Wang B Y, He X J, Yoon J, Shen J L. Sulfur - based fluorescent probes for HOCl: Mechanisms, design, and applications[J]. Coord. Chem. Rev., 2022,450214232. doi: 10.1016/j.ccr.2021.214232

    3. [3]

      Kwon N, Chen Y H, Chen X Q, Yoon J, Kim M H. Recent progress on small molecule - based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl-)[J]. Dyes Pigment., 2022,200110132. doi: 10.1016/j.dyepig.2022.110132

    4. [4]

      Wu D, Chen L Y, Xu Q L, Chen X Q, Yoon J Y. Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl-[J]. Acc. Chem. Res., 2019,52:2158-2168. doi: 10.1021/acs.accounts.9b00307

    5. [5]

      Zhao B, Xu X H, Wen X, Liu Q Q, Dong C, Yang Q K, Fan C H, Yoon J, Lu Z L. Ratiometric near-infrared fluorescent probe monitors ferroptosis in HCC cells by imaging HClO in mitochondria[J]. Anal. Chem., 2024,96:5992-6000. doi: 10.1021/acs.analchem.4c00328

    6. [6]

      Fan G W, Zhang B, Wang J M, Wang N N, Qin S C, Zhao W L, Zhang J. Accurate construction of NIR probe for visualizing HClO fluctuations in type Ⅰ, type Ⅱ diabetes and diabetic liver disease assisted by theoretical calculation[J]. Talanta, 2024,268125298. doi: 10.1016/j.talanta.2023.125298

    7. [7]

      Fang J, Li X, Gao C, Gao S H, Li W, Seidu M A, Zhou H J. A unique phenothiazine-based fluorescent probe using benzothiazolium as a reactivity regulator for the specific detection of hypochlorite in drinking water and living organisms[J]. Talanta, 2024,268125299. doi: 10.1016/j.talanta.2023.125299

    8. [8]

      He S, Fang W L, Guo X F, Wang H. A water-soluble two -photon fluorescent probe for rapid and reversible monitoring of redox state[J]. Talanta, 2023,253124066. doi: 10.1016/j.talanta.2022.124066

    9. [9]

      Zhao Y, Yu X Q, Liu X, Zhang D L, Li H, Zhou H L, Kong W H, Qu F L. ClO- induced dual - excitation fluorescent probes responding to diverse testing modes with ratio methodology[J]. Anal. Chem., 2023,95:7170-7177. doi: 10.1021/acs.analchem.2c05532

    10. [10]

      Xu S L, Guo F F, Xu Z H, Wang Y, James T D. A hemicyanine - based fluorescent probe for ratiometric detection of ClO- and turn- on detection of viscosity and its imaging application in mitochondria of living cells and zebrafish[J]. Sens. Actuator B-Chem., 2023,383133510. doi: 10.1016/j.snb.2023.133510

    11. [11]

      Shang Z Y, Meng Q T, Zhang R, Zhang Z Q. Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo[J]. Anal. Chim. Acta, 2023,1279341783. doi: 10.1016/j.aca.2023.341783

    12. [12]

      Wang R Q, Zhou T, Li A M, Qu J, Zhang X, Zhu X F, Jing S. The design of fluorescein - ferrocene derivatives as HOCl - triggered turn - on fluorescent probes and anticancer prodrugs[J]. Dalton Trans., 2022,51:15330-15338. doi: 10.1039/D2DT02198F

    13. [13]

      Shan Y M, Yu K K, Wang N, Yu F Y, Li K, Liu Y H, Yu X Q. Assessing ClO - level during ER stress and cellular senescence through a ratio fluorescent probe with dual organelle targeting ability[J]. Sens. Actuator B-Chem., 2022,358131383. doi: 10.1016/j.snb.2022.131383

    14. [14]

      Mao G J, Gao G Q, Liang Z Z, Wang Y Y, Su L, Wang Z X, Zhang H, Ma Q J, Zhang G. A mitochondria-targetable two- photon fluorescent probe with a far-red to near-infrared emission for sensing hypochlorite in biosystems[J]. Anal. Chim. Acta, 2019,1081:184-192. doi: 10.1016/j.aca.2019.07.040

    15. [15]

      Li S J, Wang P P, Yang K, Liu Y, Cheng D, He L W. Construction of HClO activated near - infrared fluorescent probe for imaging hepatocellular carcinoma[J]. Anal. Chim. Acta, 2023,1252341009. doi: 10.1016/j.aca.2023.341009

    16. [16]

      Li S J, Yang K, Liu Y, Wang P P, Cheng D, He L W. An endoplasmic reticulum-targeted near-infrared probe for monitoring HClO fluctuation in diabetic mice and human blood[J]. Sens. Actuators B, 2023,379133253. doi: 10.1016/j.snb.2022.133253

    17. [17]

      Chen Y, Zhao Y Q, Xie P, Huang L, Wang Y, Zhang J F, Wu X H, Zhou Y. Near-infrared fluorescent probes for detection of exogenous and endogenous hypochlorite in living cells[J]. Dyes Pigment., 2020,177108308. doi: 10.1016/j.dyepig.2020.108308

    18. [18]

      Yan J L, Zhang L, Wu W N, Wang Y, Xu Z H. A novel AIRE-based fluorescent ratiometric probe with endoplasmic reticulum - targeting ability for detection of hypochlorite and bioimaging[J]. Bioorg. Chem., 2023,131106319. doi: 10.1016/j.bioorg.2022.106319

    19. [19]

      Zhang Z H, Li C C, Qu J, Zhang H, Liu K, Wang J Y. A novel and fast-responsive two-photon fluorescent probe with modified group for monitoring endogenous HClO accompanied by a large turn-on signal and its application in zebrafish imaging[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,278121361. doi: 10.1016/j.saa.2022.121361

    20. [20]

      Zhang Y, Yang H Y, Li M X, Gong S, Song J, Wang Z L, Wang S F. A red - emitting ratiometric fluorescent probe with large Stokes shift and emission peak shift for imaging hypochlorous acid in living cells and zebrafish[J]. Dyes Pigment., 2022,197109861. doi: 10.1016/j.dyepig.2021.109861

    21. [21]

      Zhan Z X, Lei Q, Dai Y C, Wang D N, Yu Q W, Lv Y, Li W M. Simultaneous monitoring of HOCl and viscosity with drug - induced pyroptosis in live cells and acute lung injury[J]. Anal. Chem., 2022,94:12144-12151. doi: 10.1021/acs.analchem.2c02235

    22. [22]

      Li X Q, Wen Q, Gu J P, Liu W Q, Wang Q M, Zhou G F, Gao J W, Zheng Y H. Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor[J]. J. Mol. Liq., 2020,319114124. doi: 10.1016/j.molliq.2020.114124

    23. [23]

      Shi R G, Chen H, Qi Y P, Huang W, Yin G, Wang R Y. From aggregation - induced to solution emission: A new strategy for designing ratiometric fluorescent probes and its application for in vivo HClO detection[J]. Analyst, 2019,144:1696-1703. doi: 10.1039/C8AN01950A

    24. [24]

      Hou J T, Kim H S, Duan C, Ji M S, Wang S, Zeng L, Ren W X, Kim J S. A ratiometric fluorescent probe for detecting hypochlorite in the endoplasmic reticulum[J]. Chem. Commun., 2019,55:2533-2536. doi: 10.1039/C9CC00066F

    25. [25]

      ZHANG C L, ZHANG J J, SHEN Y, LU J C, HUANG F, XU L. A fast - responsive mitochondria - targeting fluorescent probe detecting hypochlorite in living cells and zebrafish[J]. Chinese J. Inorg. Chem., 2022,38(8):1623-1632.

    26. [26]

      ZHANG J J, YAN M, LU W, XU L, WANG X Q. Design, synthesis and fluorescence imaging application of hypochlorite probe based on coumarin-oxime[J]. Chinese J. Inorg. Chem., 2021,37(6):1623-1632. doi: 10.11862/CJIC.2021.133

    27. [27]

      Chen L, Park S J, Wu D, Kim H M, Yoon J. A two - photon ESIPT based fluorescence probe for specific detection of hypochlorite[J]. Dyes Pigment., 2018,158:526-532. doi: 10.1016/j.dyepig.2018.01.027

    28. [28]

      Liu S S, Yan J L, Wu W N, Zhao X L, Fan Y C, Wang Y, Xu Z H. Highly selective fluorescent probe for rapid turn - on detection and cell imaging of hypochlorite anion[J]. J. Photochem. Photobiol. A, 2022,432114082. doi: 10.1016/j.jphotochem.2022.114082

    29. [29]

      Li J J, Qi X L, Wei W, Zuo G C, Dong W. A red-emitting fluorescent and colorimetric dual-channel sensor for cyanide based on a hybrid naphthopyran - benzothiazol in aqueous solution[J]. Sens. Actuator B - Chem., 2016,232:666-672. doi: 10.1016/j.snb.2016.04.021

    30. [30]

      Wei P, Yuan W, Xue F F, Zhou W, Li R H, Zhang D T, Yi T. Deformylation reaction ‐ based probe for in vivo imaging of HOCl. Chem. Sci., 2018,9: 495‐501

    31. [31]

      Sheldrick G M. SHELXTL-Integrated space-group and crystal structure determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    32. [32]

      Sheldrick G M. SHELXL ‐ 2018. University of Göttingen, Germany, 2018.

    33. [33]

      Xi L L, Guo X F, Wang C L, Wu W L, Huang M F, Miao J Y, Zhao B X. A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells[J]. Sens. Actuator B-Chem., 2018,255:666-671. doi: 10.1016/j.snb.2017.08.073

    34. [34]

      Wang B B, Lv M X, Wu W N, Xu Z H, Fan Y C, Bian L Y, Wang Y. Simple aggregation induced ratiometric emission active benzo[h] chromene derivative for detection of bisulfite in living cells[J]. J. Photochem. Photobiol. A, 2021,411113193. doi: 10.1016/j.jphotochem.2021.113193

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(4)
  • Abstract views(743)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return