NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor
- Corresponding author: Xiaoming GUO, guoxiaoming@sit.edu.cn Liang LI, lilianglcx@sit.edu.cn
Citation:
Jinglin CHENG, Xiaoming GUO, Tao MENG, Xu HU, Liang LI, Yanzhe WANG, Wenzhu HUANG. NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(8): 1592-1602.
doi:
10.11862/CJIC.20240152
Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy Environ. Sci., 2013,6:1711-1731. doi: 10.1039/c3ee00056g
Zhang X G, Buthiyappan A, Jewaratnam J, Metselaar H S C, Raman A A A. Bifunctional materials for integrated CO2 capture and conver-sion: Review on adsorbent and catalyst types, recent advances, and challenges[J]. J. Environ. Chem. Eng., 2024,12111799. doi: 10.1016/j.jece.2023.111799
Tao Y, Edwards R W J, Mauzerall D L, Celia M A. Strategic carbon dioxide infrastructure to achieve a low-carbon power sector in the mid-western and south-central United States[J]. Environ. Sci. Technol., 2021,55(22):15013-15024. doi: 10.1021/acs.est.1c03480
Ashok J, Pati S, Hongmanorom P, Zhang T X, Chen J M, Kawi S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020,356:471-489. doi: 10.1016/j.cattod.2020.07.023
Wang Y, Winter L R, Chen J G, Yan B. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic proper-ties to product selectivity[J]. Green Chem., 2021,231:249-267.
Mebrahtu C, Krebs F, Abate S, Perathoner S, Centi G, Palkovits R. CO2 methanation: Principles and challenges[J]. Stud. Surf. Sci. Catal., 2019,178:85-103.
Notton G, Nivet M L, Voyant C, Paoli C, Darras C, Motte F, Fouilloy A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting[J]. Renew. Sustain. Energy Rev., 2018,87:96-105. doi: 10.1016/j.rser.2018.02.007
Abujarad S Y, Mustafa M W, Jamian J J. Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review[J]. Renew. Sustain. Energy Rev., 2017,70:215-223. doi: 10.1016/j.rser.2016.11.246
Wulf C, Linßen J, Zapp P. Review of power-to-gas projects in Europe[J]. Energy Procedia, 2018,155:367-378. doi: 10.1016/j.egypro.2018.11.041
Ghaib K, Ben-Fares F Z. Power - to - methane: A state - of - the - art review[J]. Renew. Sustain. Energy Rev., 2018,81:433-446. doi: 10.1016/j.rser.2017.08.004
Frontera P, Macario A, Ferraro M, Antonucci P. Supported catalysts for CO2 methanation: A review[J]. Catalysts, 2017,7(2)59. doi: 10.3390/catal7020059
Zhou R, Rui N, Fan Z, Liu C J. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. Int. J. Hydrogen Energy, 2016,41(47):22017-22025. doi: 10.1016/j.ijhydene.2016.08.093
Le T A, Kim M S, Lee S H, Kim T W, Park E D. CO and CO2 methanation over supported Ni catalysts[J]. Catal. Today, 2017,293-294:89-96. doi: 10.1016/j.cattod.2016.12.036
Zhao B R, Liu L, Shi H F, Zhang H G, Zhang J, Wang Y Z, Xie Y X. Plasma - induced micro - combustion for the synthesis of Ni - M/SiO2 (M=La, Ce, Zr) catalysts with high selectivity toward CO2 methana-tion[J]. Ind. Eng. Chem. Res., 2022,61:3877-3888. doi: 10.1021/acs.iecr.1c04300
Wang K, Men Y, Liu S, Wang J G, Li Y Y, Tang Y H, Li Z P, An W, Pan X L, Li L. Decoupling the size and support/metal loadings effect of Ni/SiO2 catalysts for CO2 methanation[J]. Fuel, 2021,304121388. doi: 10.1016/j.fuel.2021.121388
Wang H, Li Z Y, Cui G Q, Wei M. Synergistic catalysis at the Ni/ ZrO(2-x) interface toward low - temperature CO2 methanation[J]. ACS Appl. Mater. Interfaces, 2023,15:19021-19031. doi: 10.1021/acsami.3c01544
Zhao K C, Wang W H, Li Z H. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation[J]. J. CO2 Util., 2016,16:236-244. doi: 10.1016/j.jcou.2016.07.010
Champon I, Bengaouer A, Chaise A, Thomas S, Roger A C. Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst[J]. J. CO2 Util., 2019,34:256-265. doi: 10.1016/j.jcou.2019.05.030
Song F J, Zhong Q, Yu Y, Shi M G, Wu Y H, Hu J H, Song Y. Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method[J]. Int. J. Hydrogen Energy, 2017,42(7):4174-4183. doi: 10.1016/j.ijhydene.2016.10.141
Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH 4 selectivity at low temperatures[J]. Int. J. Hydrogen Energy, 2012,37(7):5527-5531. doi: 10.1016/j.ijhydene.2011.12.122
Huynh H L, Yu Z X. CO2 methanation on hydrotalcite-derived catalysts and structured reactors: A review[J]. Energy Technol., 2020,8(5)1901475. doi: 10.1002/ente.201901475
He L, Lin Q Q, Liu Y, Huang Y Q. Unique catalysis of Ni -Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support[J]. J. Energy Chem., 2014,23(5):587-592. doi: 10.1016/S2095-4956(14)60144-3
Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chem. Soc. Rev., 2014,43(20):7040-7066. doi: 10.1039/C4CS00160E
Abate S, Barbera K, Giglio E, Deorsola F, Bensaid S, Perathoner S, Pirone R, Centi G. Synthesis, characterization, and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation[J]. Ind. Eng. Chem. Res., 2016,55(30):8299-8308. doi: 10.1021/acs.iecr.6b01581
Szabados M, Szabados T, Mucsi R, Sápi A, Kónya Z, Kukovecz Á, Pálinkó I, Sipos P. Facile preparation of nickel -poor layered double hydroxides from mechanochemically pretreated gibbsite with a variety of interlamellar anions and their use as catalyst precursors for CO2 hydrogenation[J]. Mater. Res. Bull., 2023,157112010. doi: 10.1016/j.materresbull.2022.112010
Namvar F, Salavati-Niasari M, Meshkani F. Effect of the rare earth metals (Tb, Nd, Dy) addition for the modification of nickel catalysts supported on alumina in CO2 methanation[J]. Int. J. Hydrogen Energy, 2023,48(5):1877-1891. doi: 10.1016/j.ijhydene.2022.10.096
Xu Y, Chen Y, Li J, Zhou J, Song M, Zhang X Q, Yin Y X. Improved low-temperature activity of Ni-Ce/γ-Al2 O3 catalyst with layer structural precursor prepared by cold plasma for CO2 methanation[J]. Int. J. Hydrogen Energy, 2017,42(18):13085-13091. doi: 10.1016/j.ijhydene.2017.04.019
Sun C, Świrk Da Costa K, Wierzbicki D, Motak M, Grzybek T, Da Costa P. On the effect of yttrium promotion on Ni - layered double hydroxides - derived catalysts for hydrogenation of CO2 to methane[J]. Int. J. Hydrogen Energy, 2021,46(22):12169-12179. doi: 10.1016/j.ijhydene.2020.03.202
Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashi-moto K. Highly active Ni/Y - doped ZrO2 catalysts for CO2 methanation[J]. Appl. Surf. Sci., 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187
Li H, Liu J, Yang J, Ma L Z, Fan X, Liang P, Liu Q, Zhao P W, Wang B, Cheng Y. Why the one-pot synthesized Sm-modified nickel phyllosilicate is more active than the post synthesized one for CO2 methanation? Identifying the pivotal role of generating Sm2Si2O7[J]. Fuel Process.Technol., 2023,247107802. doi: 10.1016/j.fuproc.2023.107802
Liu Q, Yang H Y, Dong H, Zhang W, Bian B, He Q K, Yang J, Meng X B, Tian Z W, Zhao G M. Effects of preparation method and Sm2O3 promoter on CO methanation by a mesoporous NiO-Sm2O3/Al2O3 catalyst[J]. New J. Chem., 2018,42(15):13096-13106. doi: 10.1039/C8NJ02282H
Namvar F, Hajizadeh-Oghaz M, Mahdi M A, Ganduh S H, Meshkani F, Salavati-Niasari M. The synthesis and characterization of Ni-M - Tb/Al2O3 (M: Mg, Ca, Sr and Ba) nanocatalysts prepared by different types of doping using the ultrasonic-assisted method to enhance CO2 methanation[J]. Int. J. Hydrogen Energy, 2023,48(10):3862-3877. doi: 10.1016/j.ijhydene.2022.10.243
Zhang Q W, Xu R N, Liu N, Dai C N, Yu G Q, Wang N, Chen B H. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low - temperature performance for CO2 methanation[J]. Appl. Surf. Sci., 2022,579152204. doi: 10.1016/j.apsusc.2021.152204
Sun C, Beaunier P, Da Costa P. Effect of ceria promotion on the catalytic performance of Ni/SBA - 16 catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(18):6330-6341. doi: 10.1039/D0CY00922A
Zhou L L, Guo X M, Hu X, Zhang Y X, Cheng J L, Guo Q S. CO2 methanation reaction over La - modified NiAl catalysts derived from hydrotalcite-like precursors[J]. Fuel, 2024,362130888. doi: 10.1016/j.fuel.2024.130888
Wang Z L, Zhang T Y, Reina T R, Huang L, Xie W F, Musyoka N M, Oboirien B, Wang Q. Enhanced low - temperature CO2 methanation over La - promoted NiMgAl LDH derived catalyst: Fine - tuning La loading for an optimal performance[J]. Fuel, 2024,366131383. doi: 10.1016/j.fuel.2024.131383
Yang H, Wen X Y, Yin S Y, Zhang Y X, Wu C E, Xu L, Qiu J, Hu X, Xu L L, Chen M D. The construction of the Ni/La2O2CO3 nanorods catalysts with enhanced low-temperature CO2 methanation activities[J]. J. Ind. Eng. Chem. Res., 2023,128:167-183. doi: 10.1016/j.jiec.2023.07.046
Gac W, Zawadzki W, Kuśmierz M, Słowik G, Grudziński W. Neo-dymium promoted ceria and alumina supported nickel catalysts for CO2 methanation reaction[J]. Appl. Surf. Sci., 2023,631157542. doi: 10.1016/j.apsusc.2023.157542
Dias Y R, Perez-Lopez O W. CO2 methanation over Ni - Al LDH - derived catalyst with variable Ni/Al ratio[J]. J CO2 Util., 2023,68102381. doi: 10.1016/j.jcou.2022.102381
Brooks C S, Kehrer V J. Chemisorption of carbon monoxide on metal surfaces by pulse chromatography[J]. Anal. Chem., 1969,41:103-106.
Guo X P, Peng Z J, Hu M X, Zuo C C, Traitangwong A, Meeyoo V, Li C S, Zhang S J. Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation[J]. Ind. Eng. Chem. Res., 2018,57(28):9102-9111. doi: 10.1021/acs.iecr.8b01619
Dias Y R, Bernardi F, Perez-Lopez O W. Improving low-temperature CO2 methanation by promoting Ni - Al LDH - derived catalysts with alkali metals[J]. ChemCatChem, 2023,15(22)e202300834. doi: 10.1002/cctc.202300834
Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S. Inverse NiAl2O4 on LaAlO3 -Al2O3: Unique catalytic structure for stable CO2 reforming of methane[J]. J. Phys. Chem. C, 2013,117:8120-8130. doi: 10.1021/jp401855x
Vos B, Poels E, Bliek A. Impact of calcination conditions on the structure of alumina-supported nickel particles[J]. J. Catal., 2001,198:77-88. doi: 10.1006/jcat.2000.3082
Li W Y, Zhao G F, Zhong J W, Xie J. Upgrading renewable biogas into syngas via bi-reforming over high-entropy spinel-type catalysts derived from layered double hydroxides[J]. Fuel, 2024,358130155. doi: 10.1016/j.fuel.2023.130155
Casarin M, Falcomer D, Glisenti A, Vittadini A. Experimental and theoretical study of the interaction of CO2 with α-Al2O3[J]. Inorg. Chem., 2003,42:436-445. doi: 10.1021/ic0257773
Burger T, Koschany F, Thomys O, Köhler K, Hinrichsen O. CO2 methanation over Fe- and Mn-promoted co-precipitated Ni-Al catalysts: Synthesis, characterization and catalysis study[J]. Appl. Catal. A-Gen., 2018,558:44-54. doi: 10.1016/j.apcata.2018.03.021
Weilach C, Spiel C, Föttinger K, Rupprechter G. Carbonate formation on Al2O3 thin film model catalyst supports[J]. Surf. Sci., 2011,605:1503-1509. doi: 10.1016/j.susc.2011.05.025
Fottinger K, Schlögl R, Rupprechter G. The mechanism of carbonate formation on Pd-Al2O3 catalysts[J]. Chem. Commun., 2008,3:320-322.
Ma Y, Liu J, Chu M, Yue J R, Cui Y B, Xu G W. Enhanced low - temperature activity of CO2 methanation over Ni/CeO2 catalyst[J]. Catal. Lett., 2021,152:872-882.
LI Z H, HUANG W, ZUO Z J, SONG Y J, XIE K C. XPS study on CuZnAl catalysts prepared by different methods for direct synthesis of dimethyl ether[J]. Chin. J. Catal., 2009,30(2):171-177. doi: 10.3321/j.issn:0253-9837.2009.02.017
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Dongmei Dai , Xiaobing Lai , Xiaojuan Wang , Yunting Yao , Mengmin Jia , Liang Wang , Pengyao Yan , Yaru Qiao , Zhuangzhuang Zhang , Bao Li , Dai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
For the reduced catalysts, the catalysts were reduced at 500 ℃ for 2 h.