Citation: Zijuan LI, Xuan LÜ, Jiaojiao CHEN, Haiyang ZHAO, Shuo SUN, Zhiwu ZHANG, Jianlong ZHANG, Yanling MA, Jie LI, Zixian FENG, Jiahui LIU. Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138 shu

Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation

  • Corresponding author: Zijuan LI, 38100443@qq.com
  • Received Date: 22 April 2024
    Revised Date: 14 September 2024

Figures(15)

  • The effects of oleic acid (OA) and oleylamine (OLA) ligand additions on the fluorescence properties of CdSe nanocrystals were investigated, and the mechanisms of OA and OLA ligands in the growth process of CdSe nanocrystals were analyzed in depth. The optical properties, crystal structure, micro-morphology, and size distribution of CdSe nanocrystals were characterized and analyzed using various characterization methods. The results indicate that the emission peak of the CdSe nanocrystal underwent a red shift upon the addition of OA ligands, and the magnitude of the shift was directly proportional to the number of ligands added. The emission peak of CdSe nanocrystal can be adjusted within the range of 548.5-604.0 nm. When a small amount of OLA ligand was added, the peak shifted towards blue. However, with an increase in the amount of OLA ligand, the peak gradually shifted towards red, with an adjustable range of 548.0-584.4 nm. The layer-by-layer growth method, with the introduction of OA and OLA ligands, can effectively improve the bimodal emission peak phenomenon caused by multiple layer-bylayer growth. Finally, by adjusting the preparation process, four CdSe nanocrystals with fluorescence emission visualization separation were prepared with good size distribution, high photoluminescence quantum yield (PLQY) and excellent resistance to photobleaching.
  • 加载中
    1. [1]

      ARQUER F P G, TALAPIN D V, KLIMOV V I, ARAKAWA Y, BAYER M, SARGENT E H. Semiconductor quantum dots: Technological progress and future challenges[J]. Science, 2021,3736555.

    2. [2]

      SHU Y F, LIN X, QIN H Y, HU Z, JIN Y Z, PENG X G. Quantum dots for display applications[J]. Angew. Chem.-Int. Edit., 2020,5922312. doi: 10.1002/anie.202004857

    3. [3]

      KHAN Z G, PATIL P O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols[J]. Microchem. J., 2020,157105011. doi: 10.1016/j.microc.2020.105011

    4. [4]

      ISO Y, ISOBE T. Critical review-Photostable fluorescent Cd-free quantum dots transparently embedded in monolithic silica[J]. ECS J. Solid State Sci. Technol., 2019,9016005.

    5. [5]

      KAMAT P V, KUNO M. Halide ion migration in perovskite nanocrystal and nanostructures[J]. Acc. Chem. Res., 2021,54:520-531. doi: 10.1021/acs.accounts.0c00749

    6. [6]

      COE S, WOO W K, Bawendi M, Bulovic V. Electroluminescence from single monolayers of nanocrystal in molecular organic devices[J]. Nature, 2002,420:800-803. doi: 10.1038/nature01217

    7. [7]

      DAI X L, ZHANG Z X, JIN Y Z, NIU Y, CAO H J, LIANG X Y, CHEN L W, WANG J P, PENG X G. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014,515:96-99. doi: 10.1038/nature13829

    8. [8]

      YANG Y X, ZHENG Y, CAO W R, TITOV A, HYVONEN J, MANDERS J R, XUE J G, HOLLOWAY P H, QIAN L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nat. Photonics, 2015,9:259-266. doi: 10.1038/nphoton.2015.36

    9. [9]

      MCDONALD S A, KONSTANTATOS G, ZHANG S, CYR P W, KLEM E J D, LEVINA L, SARGENT E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat. Mater., 2005,4:138-142. doi: 10.1038/nmat1299

    10. [10]

      WU K F, LI H B, KLIMOV V I. Tandem luminescent solar concentrators based on engineered quantum dots[J]. Nat. Photonics, 2018,12:105-110. doi: 10.1038/s41566-017-0070-7

    11. [11]

      BRUCHEZ M, MORONNE M, GIN P, WEISS S, ALIVISATOS A P. Semiconductor nanocrystal as fluorescent biological labels[J]. Science, 1998,281:2013-2016. doi: 10.1126/science.281.5385.2013

    12. [12]

      KLIMOV V I, MIKHAILOVSKY A A, XU S, MALKO A, HOLLINGSWORTH J A, LEATHERDALE C A, EISLER H J, BAWENDI M G. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000,290:314-317. doi: 10.1126/science.290.5490.314

    13. [13]

      WU K F, PARK Y S, LIM J, KLIMOV V I. Towards zero-threshold optical gain using charged semiconductor quantum dots[J]. Nat. Nanotechnol., 2017,12:1140-1147. doi: 10.1038/nnano.2017.189

    14. [14]

      LIN X, DAI X L, PU C D, DENG Y Z, NIU Y, TONG L M, FANG W, JIN Y Z, PENG X G. Electrically-driven single-photon sources based on colloidal quantum dots with nearoptimal antibunching at room temperature[J]. Nat. Commun., 2017,81132. doi: 10.1038/s41467-017-01379-6

    15. [15]

      MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993,115:8706-8715. doi: 10.1021/ja00072a025

    16. [16]

      PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystal using CdO as precursor[J]. J. Am. Chem. Soc., 2001,123:183-184. doi: 10.1021/ja003633m

    17. [17]

      LIU X Y, LIU Y X, XU S, GENG C, XIE Y Y, ZHANG Z H, ZHANG Y H, BI W G. Formation of "steady size" state for accurate size control of CdSe and CdS quantum dots[J]. J. Phys. Chem. Lett., 2017,8:3576-3580. doi: 10.1021/acs.jpclett.7b01238

    18. [18]

      LIU L P, ZHUANG Z B, XIE T, WANG Y G, LI J, PENG Q, LI Y D. Shape control of CdSe nanocrystal with zinc blende structure[J]. J. Am. Chem. Soc., 2009,131:16423-16429. doi: 10.1021/ja903633d

    19. [19]

      VISHNU E K, NAIR A A K, THOMAS K G. Coresize dependent trapping and detrapping dynamics in CdSe/CdS/ZnS quantum dots[J]. J. Phys. Chem. C, 2021,125:25706-25716. doi: 10.1021/acs.jpcc.1c08137

    20. [20]

      KARPOV O N, BONDARENKO G N, MEREKALOV A S, SHANDRYUK G A, ZHIGALINA O M, KHMELENIN D N, SKRYLEVA E A, GOLOVAN L A, TALROZE R V. Formation of the inorganic and organic shells on the surface of CdSe quantum dots[J]. ACS Appl. Mater. Interfaces, 2021,13:36190-36200. doi: 10.1021/acsami.1c10315

    21. [21]

      PARK M, BYUN M, JUNG J. Facile synthesis of Cd1-xZnxSe1-ySy/CdSe/Cd1-xZnxSe1-ySy nanoplatelets with precisely controlled emission wavelength[J]. Thin Solid Films, 2022,751139218. doi: 10.1016/j.tsf.2022.139218

    22. [22]

      KIPROTICH S, DEJENE F B, ONANI M O. Structural and optical properties of novel CdSe nanoparticles produced via a facile synthetic route: Studies on the effects of cadmium sources[J]. Surf. Interface Anal., 2019,51:722-732. doi: 10.1002/sia.6643

    23. [23]

      NATH D, SINGH F, DAS R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-A comparative study[J]. Mater. Chem. Phys., 2020,239122021. doi: 10.1016/j.matchemphys.2019.122021

    24. [24]

      GIACOMO A D, RODÀ C, KHAN A H, MOREELS I. Colloidal Synthesis of laterally confined blue-emitting 3.5 monolayer CdSe nano-platelets[J]. Chem. Mater., 2020,32:9260-9267. doi: 10.1021/acs.chemmater.0c03066

    25. [25]

      HAO J J, LIU H C, DUAN X J, ZHOU Z M, ZHAO B X, ZHANG W D, XU B, SUN X W, DELVILLE M H. Shape control of CdSe/CdS nanocrystal during shell formation and growth: Dominating effects of surface ligands over core crystal structure[J]. Sci. China Mater., 2023,66:3621-3628. doi: 10.1007/s40843-023-2481-1

    26. [26]

      LV L L, LI J Z, WANG Y H, SHU Y F, PENG X G. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth[J]. J. Am. Chem. Soc., 2020,142:19926-19935. doi: 10.1021/jacs.0c06914

    27. [27]

      VAN EMBDEN J, MULVANEY P. Nucleation and growth of CdSe nanocrystal in a binary ligand system[J]. Langmuir, 2005,21:10226-10233. doi: 10.1021/la051081l

    28. [28]

      BULLEN C, VAN EMBDEN J, JASIENIAK J, COSGRIFF J E, MULDER R J, RIZZARDO E, GU M, RASTON C L. High activity phosphine-free selenium precursor solution for semiconductor nano-crystal growth[J]. Chem. Mater., 2010,22:4135-4143. doi: 10.1021/cm903813r

    29. [29]

      YORDANOV G G, YOSHIMURA H, DUSHKIN C D. Synthesis of high-quality core-shell quantum dots of CdSe-CdS by means of gradual heating in liquid paraffin[J]. Colloid. Polym. Sci., 2008,28:813-817.

    30. [30]

      PU C D, ZHOU J H, LAI R C, NIU Y, NAN W N, PENG X G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystal: Se-octadecene suspension (Se-SUS)[J]. Nano Res., 2013,6:652-670. doi: 10.1007/s12274-013-0341-7

    31. [31]

      ELIMELECH O, AVIV O, ODED M, PENG X G, HARRIES D, BANIN U. Entropy of branching out: Linear versus branched alkyl-thiols ligands on CdSe nanocrystal[J]. ACS Nano, 2022,16:4308-4321. doi: 10.1021/acsnano.1c10430

    32. [32]

      JI C G, BUHRO W E. Halometallates bind as Z-type ligands on wurtzite CdSe nanoplatelets[J]. Chem. Mater., 2022,34:8935-8945. doi: 10.1021/acs.chemmater.2c02293

    33. [33]

      COSSEDDU S, PASCAZIO R, GIANSANTE C, MANNA L, INFANTE I. Ligand dynamics on the surface of CdSe nanocrystal[J]. Nanoscale, 2023,15:7410-7419. doi: 10.1039/D2NR06681E

    34. [34]

      HAO H, LIU M, TANG G, LIU Y, JIANG F L. CdSe/ZnS quantum dots with enhanced stability and conductivity by thiolphenyl ligands for displays[J]. ACS Appl. Nano Mater., 2024,7:12653-12663. doi: 10.1021/acsanm.4c01133

    35. [35]

      KELM J E, DEMPSEY J L. Metal-dictated reactivity of Z-type ligands to passivate surface defects on CdSe nanocrystal[J]. J. Am. Chem. Soc., 2024,146:5252-5262. doi: 10.1021/jacs.3c11811

    36. [36]

      ZHOU J H, PU C D, JIAO T Y, HOU X Q, PENG X G. A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystal[J]. J. Am. Chem. Soc., 2016,138:6475-6483. doi: 10.1021/jacs.6b00674

    37. [37]

      ISHANKULOV A F, KHALILOV K F, SHAMILOV R R, GALYAMETDINOV Y G, MUKHAMADIEV N K. Size-optical characteristics of CdSe/ZnS quantum dots modified by thiol stabilizers[J]. J. Sol-Gel Sci. Technol., 2023,108:292-297. doi: 10.1007/s10971-023-06096-9

    38. [38]

      CAO W C, YAKIMOV A, QIAN X D, LI J Z, PENG X G, KONG X Q, COPÉRET C. Surface sites and ligation in amine-capped CdSe nanocrystal[J]. Angew. Chem.-Int. Edit., 2023,62e202312713. doi: 10.1002/anie.202312713

    39. [39]

      HUANG X, PARASHAR V K, GIJS M A M. Synergistic effect of carboxylic and amine ligands on the synthesis of CdSe nanocrystal[J]. RSC Adv., 2016,6(91):88911-88915. doi: 10.1039/C6RA20812F

    40. [40]

      LE N, ROUTH J, KIRK C, WU Q H, PATEL R, KEYES C, KIM K. Red CdSe/ZnS QDs'intracellular trafficking and its impact on yeast polarization and actin filament[J]. Cells, 2023,12484. doi: 10.3390/cells12030484

    41. [41]

      RANI A, SINHA A. Enhanced dielectric, electrical and electro-optical properties: Towards understanding the interaction in mesophases of 8OCB liquid crystal dispersed with CdSe/ZnS quantum dots[J]. J. Mol. Liq., 2024,398124201. doi: 10.1016/j.molliq.2024.124201

    42. [42]

      WANG L X, QIAN X D, REN Y, LEI H R, HU X F, CHEN D D, LI J Z, PENG X G. Tuning the crystal structure of the epitaxial CdS shells on zinc-blende CdSe nanocrystal: Lattice defects and electronic traps[J]. Chem. Mater., 2022,34:8297-8305. doi: 10.1021/acs.chemmater.2c01835

    43. [43]

      ZHANG L, YANG H Y, TANG Y, XIANG W B, WANG C N, XU T, WANG X Y, XIAO M, ZHANG J Y. High-performance CdSe/CdS@ZnO quantum dots enabled by ZnO sol as surface ligands: A novel strategy for improved optical properties and stability[J]. Chem. Eng. J., 2022,428131159. doi: 10.1016/j.cej.2021.131159

    44. [44]

      LEI H R, LI T H, LI J Z, ZHU J, ZHANG H B, QIN H Y, KONG X Q, WANG L J, PENG X G. Reversible facet reconstruction of CdSe/CdS core/shell nanocrystal by facet-ligand pairing[J]. J. Am. Chem. Soc., 2023,145:6798-6810. doi: 10.1021/jacs.2c13500

    45. [45]

      LI J L, ZHENG H X, ZHENG Z M, RONG H B, ZENG Z D, ZENG H. Synthesis of CdSe and CdSe/ZnS quantum dots with tunable crystal structure and photoluminescent properties[J]. Nanomaterials, 2022,122969. doi: 10.3390/nano12172969

    46. [46]

      Zhang J K, Li C Y, Li J Z, Peng X G. Synthesis of CdSe/ZnSe core/shell and CdSe/ZnSe/ZnS core/shell/shell nanocrystal: Surface-ligand strain and CdSe-ZnSe lattice strain[J]. Chem. Mater., 2023,35:7049-7059. doi: 10.1021/acs.chemmater.3c01333

    47. [47]

      Zhu H M, Song N H, Lian T Q. Controlling Charge separation and recombination rates in CdSe/ZnS type Ⅰ core-shell quantum dots by shell thicknesses[J]. J. Am. Chem. Soc., 2010,132:15038-15045. doi: 10.1021/ja106710m

    48. [48]

      KONG D G, JIA Y Y, REN Y P, XIE Z X, WU K F, LIAN T Q. Shell-thickness-dependent biexciton lifetime in type Ⅰ and quasi-type Ⅱ CdSe@CdS core/shell quantum dots[J]. J. Phys. Chem. C, 2018,122(25):14091-14098. doi: 10.1021/acs.jpcc.8b01234

    49. [49]

      WASHINGTON A L, FOLEY M E, CHEONG S, QUFFA L, BRESHIKE C J, WATT J, TILLEY R D, STROUSE G F. Ostwald's rule of stages and its role in CdSe quantum dot crystallization[J]. J. Am. Chem. Soc., 2012,134:17046-17052. doi: 10.1021/ja302964e

    50. [50]

      SUN Z H, OYANAGI H, NAKAMURA H, JIANG Y, ZHANG L, UEHARA M, YAMASHITA K, FUKANO A, MAEDA H. Ligand effects of amine on the initial nucleation and growth processes of CdSe Nanocrystal[J]. J. Phys. Chem. C, 2010,114(22):10126-10131. doi: 10.1021/jp101345n

    51. [51]

      DONG G Y, ZHAO J X, MA H T, ZHAO J, ZHAO S Y, LI M D, LI S G, GUAN L, WEI Z R, LI X. Effect of amine type on the structure and luminescent properties of CdSe quantum dots[J]. Optik, 2019,178:1-7. doi: 10.1016/j.ijleo.2018.09.124

    52. [52]

      HUANG X, PARASHAR V K, GIJS M A M. Synergistic effect of carboxylic and amine ligands on the synthesis of CdSe nanocrystal[J]. RSC Adv., 2016,6(91):88911-88915. doi: 10.1039/C6RA20812F

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    3. [3]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    16. [16]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(3)
  • Abstract views(403)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return