Citation: Yadan SUN, Xinfeng LI, Qiang LIU, Oshio Hiroki, Yinshan MENG. Structures and magnetism of dinuclear Co complexes based on imine derivatives[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131 shu

Structures and magnetism of dinuclear Co complexes based on imine derivatives

  • Corresponding author: Yinshan MENG, mengys@dlut.edu.cn
  • #共同第一作者。
  • Received Date: 13 April 2024
    Revised Date: 10 September 2024

Figures(5)

  • This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives: bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether (L1), bis-[4-(2-pyridylmethyleneamino)-phenyl]ether (L2), and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane (L3). Single-crystal X-ray diffraction analysis reveals that the complexes [Co2(L1)3](ClO4)4·2CH3CN (1), [Co2(L2)3](ClO4)4·2CH3OH (2), and [Co2(L3)3](ClO4)4·2CH3OH (3) all exhibit a dinuclear structure. Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K, with the average Co—N bond length increasing from 0.213 9(3) to 0.215 3(3) nm. Meanwhile, the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2. Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.
  • 加载中
    1. [1]

      Espinosa C F, Ronson T K, Nitschke J R. Secondary bracing ligands drive heteroleptic cuboctahedral Pd12 cage formation[J]. J. Am. Chem. Soc., 2023,145(18):9965-9969. doi: 10.1021/jacs.3c00661

    2. [2]

      LIU D, ZHANG L, SHAO Z, MENG Y S, LIU T. A 2D cyano-bridged W-Co coordination network exhibiting reversible thermal-induced charge transfer[J]. Chinese J. Inorg. Chem., 2023,39(2):367-374.

    3. [3]

      YANG R, ZHANG S Y, WANG R G, MENG Y S, LIU T, ZHU Y Y. Synthesis and magnetic properties of mononuclear cobalt(Ⅱ) spin crossover complexes from complementary terpyridine ligand pairing[J]. Chinese J. Inorg. Chem., 2023,38(8):1477-1486.

    4. [4]

      Moree L K, Faulkner L A V, Crowley J D. Heterometallic cages: Synthesis and applications[J]. Chem. Soc. Rev., 2024,53(1):25-46. doi: 10.1039/D3CS00690E

    5. [5]

      Gural'skiy I A, Kucheriv O I, Shylin S I, Ksenofontov V, Polunin R A, Fritsky I O. Enantioselective guest effect on the spin state of a chiral coordination framework[J]. Chem.-Eur. J., 2015,21(50):18076-18079. doi: 10.1002/chem.201503365

    6. [6]

      He P, Hu M Y, Li J H, Qiao T Z, Lu Y L, Zhu S F. Spin effect on redox acceleration and regioselectivity in Fe-catalyzed alkyne hydrosilylation[J]. Natl. Sci. Rev., 2024,11(2)nwad324. doi: 10.1093/nsr/nwad324

    7. [7]

      Bousseksou A, Molnár G, Real J A, Tanaka K. Spin crossover and photomagnetism in dinuclear iron compounds[J]. Coord. Chem. Rev., 2007,251(13/14):1822-1833.

    8. [8]

      Hogue R W, Singh S, Brooker S. Spin crossover in discrete polynuclear iron(Ⅱ) complexes[J]. Chem. Soc. Rev., 2018,47(19):7303-7338. doi: 10.1039/C7CS00835J

    9. [9]

      Scott H S, Staniland R W, Kruger P E. Spin crossover in homoleptic Fe(Ⅱ) imidazolylimine complexes[J]. Coord. Chem. Rev., 2018,362:24-43. doi: 10.1016/j.ccr.2018.02.001

    10. [10]

      Gütlich P, Gaspar A B, Garcia Y. Spin state switching in iron coordination compounds[J]. Beilstein J. Org. Chem., 2013,9:342-391. doi: 10.3762/bjoc.9.39

    11. [11]

      Kusumoto S, Inaba K, Suda H, Nakaya M, Tokunaga R, Thuéry P, Haruki R, Kanazawa T, Nozawa S, Kim Y, Hayami S, Koide Y. Cooperative spin-state switching and vapochromism of mononuclear Ni(Ⅱ) complexes by pyridine coordination/decoordination[J]. Inorg. Chem., 2023,62(39):16222-16227. doi: 10.1021/acs.inorgchem.3c02776

    12. [12]

      Guo W, Daro N, Pillet S, Marchivie M, Bendeif E E, Tailleur E, Chainok K, Denux D, Chastanet G, Guionneau P. Unprecedented reverse volume expansion in spin-transition crystals[J]. Chem.-Eur. J., 2020,26(57):12927-12930. doi: 10.1002/chem.202001821

    13. [13]

      Ishikawa R, Ueno S, Nifuku S, Horii Y, Iguchi H, Miyazaki Y, Nakano M, Hayami S, Kumagai S, Katoh K, Li Z Y, Yamashita M, Kawata S. Simultaneous spin-crossover transition and conductivity switching in a dinuclear iron(Ⅱ) coordination compound based on 7, 7', 8, 8'-tetracyano-p-quinodimethane[J]. Chem.-Eur. J., 2019,26(6):1278-1285.

    14. [14]

      Üngör Ö, Choi E S, Shatruk M. Optimization of crystal packing in semiconducting spin-crossover materials with fractionally charged TCNQδ- anions (0 < δ < 1)[J]. Chem. Sci., 2021,12(32):10765-10779. doi: 10.1039/D1SC02843J

    15. [15]

      Yang Y, Ronson T K, Zheng J, Mihara N, Nitschke J R. Fluoride up- and down-regulates guest encapsulation for Zn6L4 and Zn4L4 cages[J]. Chem, 2023,9(7):1972-1982. doi: 10.1016/j.chempr.2023.03.027

    16. [16]

      Singh S, Hogue R W, Feltham H L C, Brooker S. Dinuclear helicate and tetranuclear cage assembly using appropriately designed ditopic triazole-azine ligands[J]. Dalton Trans., 2019,48(41):15435-15444. doi: 10.1039/C9DT01890E

    17. [17]

      Li L, Craze A R, Akiyoshi R, Tsukiashi A, Hayami S, Mustonen O, Bhadbhade M M, Bhattacharyya S, Marjo C E, Wang Y, Lindoy L F, Aldrich-Wright J R, Li F. Direct monitoring of spin transitions in a dinuclear triple-stranded helicate iron(Ⅱ) complex through X-ray photoelectron spectroscopy[J]. Dalton Trans., 2018,47(8):2543-2548. doi: 10.1039/C7DT04190J

    18. [18]

      Parajó Y, Malina J, Meistermann I, Clarkson G J, Pascu M, Rodger A, Hannon M J, Lincoln P. Effect of bridging ligand structure on the thermal stability and DNA binding properties of iron(Ⅱ) triple helicates[J]. Dalton Trans., 2009(25):4868-4874. doi: 10.1039/b822039e

    19. [19]

      Archer R J, Scott H S, Polson M I J, Williamson B E, Mathonière C, Rouzières M, Clérac R, Kruger P E. Varied spin crossover behaviour in a family of dinuclear Fe(Ⅱ) triple helicate complexes[J]. Dalton Trans., 2018,47(24):7965-7974. doi: 10.1039/C8DT01567H

    20. [20]

      Athira S, Mondal D J, Shome S, Dey B, Konar S. Effect of intermolecular anionic interactions on spin crossover of two triple-stranded dinuclear Fe(Ⅱ) complexes showing above room temperature spin transition[J]. Dalton Trans., 2022,51(43):16706-16713. doi: 10.1039/D2DT02115C

    21. [21]

      He C, Duan C Y, Fang C J, Meng Q J. Self-assembled dinuclear molecular box [Ag2L2]2+ and triple helicates [Co2L3]4+, [Ni2L3]4+ {L=bis[4-(2-pyridylmethyleneamino)phenyl] ether}[J]. J. Chem. Soc. Dalton Trans., 2000(14):2419-2424. doi: 10.1039/b001820l

    22. [22]

      Craze A, Bhadbhade M, Kepert C, Lindoy L, Marjo C, Li F. Solvent effects on the spin-transition in a series of Fe(Ⅱ) dinuclear triple helicate compounds[J]. Crystals, 2018,8(10)376. doi: 10.3390/cryst8100376

    23. [23]

      McConnell A J, Aitchison C M, Grommet A B, Nitschke J R. Subcomponent exchange transforms an Fe4L4 cage from high- to low-Spin, switching guest release in a two-cage system[J]. J. Am. Chem. Soc., 2017,139(18):6294-6297. doi: 10.1021/jacs.7b01478

    24. [24]

      Li L, Craze A R, Mustonen O, Zenno H, Whittaker J J, Hayami S, Lindoy L F, Marjo C E, Clegg J K, Aldrich-Wright J R, Li F. A mixed-spin spin-crossover thiozolylimine [Fe4L6]8+ cage[J]. Dalton Trans., 2019,48(27):9935-9938. doi: 10.1039/C9DT01947B

    25. [25]

      Yin F, Yang J, Zhou L P, Meng X, Tian C B, Sun Q F. 54 K spin transition temperature shift in a Fe6L4 octahedral cage induced by optimal fitted multiple guests[J]. J. Am. Chem. Soc., 2024,146(11):7811-7821. doi: 10.1021/jacs.4c00705

    26. [26]

      Singh S, Brooker S. Correlations between ligand field Δo, spin crossover T1/2 and redox potential Epa in a family of five dinuclear helicates[J]. Chem. Sci., 2021,12(32):10919-10929. doi: 10.1039/D1SC01458G

    27. [27]

      Thomas J A. Metal ion directed self-assembly of sensors for ions, molecules and biomolecules[J]. Dalton Trans., 2011,40:12368-12373. doi: 10.1039/c1dt11381j

    28. [28]

      Craze A R, Bhadbhade M M, Komatsumaru Y, Marjo C E, Hayami S, Li F. A rare example of a complete, incomplete, and non-occurring spin transition in a [Fe2L3]X4 series driven by a combination of solvent-and halide-anion-mediated steric factors[J]. Inorg. Chem., 2020,59(9):1274-1283.

    29. [29]

      Craze A R, Zenno H, Pfrunder M C, McMurtrie J C, Hayami S, Clegg J K, Li F. Supramolecular modulation of spin crossover in an Fe(Ⅱ) dinuclear triple helicate[J]. Inorg. Chem., 2021,60(9):6731-6738. doi: 10.1021/acs.inorgchem.1c00553

    30. [30]

      Garcia Y, Grunert C M, Reiman S, Van Campenhoudt O, Gütlich P. The two-step spin conversion in a supramolecular triple helicate dinuclear iron(Ⅱ) complex studied by mössbauer spectroscopy[J]. Eur. J. Inorg. Chem., 2006(17):3333-3339.

    31. [31]

      Tanh Jeazet H B, Gloe K, Doert T, Kataeva O N, Jäger A, Geipel G, Bernhard G, Büchner B, Gloe K. Self-assembly of neutral hexanuclear circular copper(Ⅱ) meso-helicates: Topological control by sulfate ions[J]. Chem. Commun., 2010,46(14):2373-2375. doi: 10.1039/b925469b

    32. [32]

      Hotze A C G, Hodges N J, Hayden R E, Sanchez-Cano C, Paines C, Male N, Tse M K, Bunce C M, Chipman J K, Hannon M J. Supramolecular iron cylinder with unprecedented DNA binding is a potent cytostatic and apoptotic agent without exhibiting genotoxicity[J]. Chem. Biol., 2008,15(12):1258-1267. doi: 10.1016/j.chembiol.2008.10.016

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    3. [3]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    8. [8]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    9. [9]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    10. [10]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    11. [11]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    12. [12]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    13. [13]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    16. [16]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    17. [17]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    18. [18]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    19. [19]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    20. [20]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

Metrics
  • PDF Downloads(1)
  • Abstract views(273)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return