Citation: Yu SU, Xinlian FAN, Yao YIN, Lin WANG. From synthesis to application: Development and prospects of InP quantum dots[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126 shu

From synthesis to application: Development and prospects of InP quantum dots

Figures(9)

  • Quantum dot materials have excellent optical properties related to size, such as tunable emission wavelength, narrow full width at half maximum, and wide excitation range, and have a wide range of applications. However, currently, mainstream quantum dots generally contain elements such as cadmium and lead, which is not conducive to the development of commercial products. Indium phosphide (InP) quantum dots have no heavy metal toxicity, and their spectral range can cover the entire visible light region. They have luminescence and optoelectronic properties comparable to cadmium‐based quantum dots and are gradually gaining attention. This article reviews the progress of research in the synthesis methods and applications of InP quantum dots in recent years. Firstly, the advantages and disadvantages of InP quantum dot synthesis methods such as hot injection, heating, crystal nucleus growth, and cation exchange are discussed. Then, the current application achievements of InP quantum dots in fields such as illumination display, photovoltaics, photocatalysis, and optical labeling imaging are highlighted. Finally, the challenges and possible solutions for the development of InP quantum dots are proposed from the perspectives of material synthesis and device applications, to promote the research and application of InP quantum dots and provide new ideas for the development of the optoelectronic field.
  • 加载中
    1. [1]

      He K Y, Zhu J J, Li Z S, Chen Z, Zhang H H, Liu C, Zhang X, Wang S, Zhao P Y, Zhou Y, Zhang S Z, Yin Y, Zheng X R, Huang W, Wang L. High-sensitive 2D PbI2 photodetector with ultrashort channel[J]. Front. Phys., 2023,18(6)63305. doi: 10.1007/s11467-023-1323-1

    2. [2]

      Zhang X, Wang C L, Ou Z W, Jiang X H, Chen J L, Ma H F, Zha C Y, Wang W, Zhang L H, Wang T, Wang L. Thickness-dependent excitonic properties of WSe2/FePS3 van der waals heterostructures[J]. Nanoscale, 2023,15(2):828-835. doi: 10.1039/D2NR05455H

    3. [3]

      Tang J, Ge F X, Chen J L, Zhou D W, Zhan G X, Liu J, Yuan J X, Shi X Y, Zhao P Y, Fan X L, Su Y, Liu C Z, He J H, Tang J Q, Zha C Y, Zhang L H, Song X F, Wang L. A droplet method for synthesis of multiclass ultrathin metal halides[J]. Small, 2023,19(43)2301573. doi: 10.1002/smll.202301573207895

    4. [4]

      Tong T, Gan Y Q, Li W S, Zhang W, Song H Z, Zhang H H, Liao K, Deng J, Li S, Xing Z Y, Yu Y, Tu Y D, Wang W H, Chen J L, Zhou J, Song X F, Zhang L H, Wang X Y, Qin S C, Shi Y, Huang W, Wang L. Boosting the sensitivity of WSe2 phototransistor via Janus interfaces with 2D perovskite and ferroelectric layers[J]. ACS Nano, 2024,17(1):530-538.

    5. [5]

      Lv C G, Zhang L H, Zhang X, Zhang H M, Xie H G, Zhang J H, Liu Y F, Liu Y, Wu R X, Zhang J R, Zha C Y, Wang W, Wan Z, Li B, Zhu C, Ma H F, Duan X D, Wang L. Controlled synthesis of submillimeter non-layered WO2 nanoplates via a WSe2-assisted method[J]. Adv. Mater., 2023,35(12)2207895. doi: 10.1002/adma.202207895

    6. [6]

      Liu C, Pan J, Yuan Q H, Zhu C, Liu J Q, Ge F X, Zhu J J, Xie H T, Zhou D W, Zhang Z C, Zhao P Y, Tian B B, Huang W, Wang L. Highly reliable van der waals memory boosted by a single 2D charge trap medium[J]. Adv. Mater., 2023,36(3)2305580.

    7. [7]

      Bawendi M G, Steigerwald M L, Brus L E. The quantum mechanics of larger semiconductor clusters ("quantum dots")[J]. Annu. Rev. Phys. Chem., 1990,41(1):477-496. doi: 10.1146/annurev.pc.41.100190.002401

    8. [8]

      Almeida G, Ubbink R F, Stam M, Fossé I D, Houtepen A J. InP colloidal quantum dots for visible and near-infrared photonics[J]. Nat. Rev. Mater., 2023,8(11):742-758. doi: 10.1038/s41578-023-00596-4

    9. [9]

      Peng L C, Wang Y J, Ren Y R, Wang Z R, Cao P F, Konstantatos G. InSb/InP core-shell colloidal quantum dots for sensitive and fast shortwave infrared photodetectors[J]. ACS Nano, 2024,18(6):5113-5121. doi: 10.1021/acsnano.3c12007

    10. [10]

      Chen M, Wang J X, Yin F F, Du Z G, Belfiore L A, Tang J G. Strategically integrating quantum dots into organic and perovskite solar cells[J]. J. Mater. Chem. A, 2021,9(8):4505-4527. doi: 10.1039/D0TA11336K

    11. [11]

      Lin X Y, Chen Z W, Han Y Y, Nie C M, Xia P, He S, Li J T, Wu K F. ZnSe/ZnS core/shell quantum dots as triplet sensitizers toward visible-to-ultraviolet B photon upconversion[J]. ACS Energy Lett., 2022,7(3):914-919. doi: 10.1021/acsenergylett.2c00017

    12. [12]

      Zhang W D, Duan X J, Tan Y Z, Hao J J, Zhu H M, Wang Q Q, Yang H C, Liu H C, Wang K, Wang Z W, Wang Y L, Song Y J, Sun X W. Giant pyramidal near-infrared InP/ZnS quantum dots with size over 15 nm for cell imaging[J]. Laser Photon. Rev., 20242400367. doi: 10.1002/lpor.202400367

    13. [13]

      Wang L J, Liang C X, Zheng N Y, Yang C Y, Yan S, Wang X, Zuo Z H, He C Y. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots[J]. Sci. Total Environ., 2024,908168420. doi: 10.1016/j.scitotenv.2023.168420

    14. [14]

      Wang Y K, Wan H Y, Xu J, Zhong Y, Jung E D, Park S M, Teale S, Imran M, Yu Y J, Xia P, Won Y H, Kim K H, Lu Z H, Liao L S, Hoogland S, Sargent E H. Bifunctional electron-transporting agent for red colloidal quantum dot light-emitting diodes[J]. J. Am. Chem. Soc., 2023,145(11):6428-6433. doi: 10.1021/jacs.2c13677

    15. [15]

      Zhu Z H, Zhu C, Yang L, Chen Q, Zhang L H, Dai J, Cao J C, Zeng S Y, Wang Z Y, Wang Z W, Zhang W, Bao J S, Yang L J, Yang Y, Chen B, Yin C Y, Chen H, Cao Y, Gu H, Yan J X, Wang N N, Xing G C, Li H, Wang X Y, Li S Z, Liu Z, Zhang H, Wang L, Huang X, Huang W. Room-temperature epitaxial welding of 3D and 2D perovskites[J]. Nat. Mater., 2022,21(9):1042-1049. doi: 10.1038/s41563-022-01311-4

    16. [16]

      Zhan G X, Zhang J R, Zhang L H, Qu Z W, Yang H Y, Qian Y C, Zhang X, Xing Z Y, Zhang L, Li C Z, Zhong J X, Yuan J X, Cao Y, Zhou D W, Chen X L, Ma H F, Song X F, Zha C Y, Huang X, Wang J P, Wang T, Huang W, Wang L. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites[J]. Nano Lett., 2022,22(10):3961-3968. doi: 10.1021/acs.nanolett.2c00482

    17. [17]

      Cao Y, Li C Z, Deng J, Tong T, Qian Y C, Zhan G X, Zhang X, He K Y, Ma H F, Zhang J R, Zhou J, Wang L. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite[J]. Nano Res., 2022,15(8):7492-7497. doi: 10.1007/s12274-022-4378-3

    18. [18]

      Zhang J R, Song X F, Wang L, Huang W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics[J]. Natl. Sci. Rev., 2022,9(5)nwab129. doi: 10.1093/nsr/nwab129

    19. [19]

      Luo Y, Zhang J R, Chen X L, Wang L. Enlighten the non-illuminated region by phase segregation of mixed halide perovskites[J]. Light-Sci. Appl., 2022,11(1)311. doi: 10.1038/s41377-022-01019-9

    20. [20]

      Zhou D W, Zhao P Y, Zhang J R, Jiang X H, Qin S C, Zhang X, Jiang R, Deng Y F, Jiang H J, Zhan G X, Luo Y, Ma H F, Wang L. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications[J]. Small, 2022,18(48)2205227. doi: 10.1002/smll.202205227

    21. [21]

      Yuan J X, Zhang X M, Zhou D W, Ge F X, Zhong J X, Zhao S H, Ou Z W, Zhan G X, Zhang X, Li C Z, Tang J, Bai Q, Zhang J R, Zhu C, Wang T, Ruan L F, Zhu C Q, Song X F, Huang W, Wang L. Excessive iodine enabled ultrathin inorganic perovskite growth at the liquid-air interface[J]. Angew. Chem. Int. Ed., 2023,62(19)e202218546. doi: 10.1002/anie.202218546

    22. [22]

      Shi X Y, Liu C, Zhang X M, Zhan G X, Cai Y X, Zhou D W, Zhao Y W, Wang N N, Hu F R, Wang X Y, Ma H F, Wang L. Vapor phase growth of air-stable hybrid perovskite FAPbBr3 single-crystalline nanosheets[J]. Nano Lett., 2024,24(7):2299-2307. doi: 10.1021/acs.nanolett.3c04604

    23. [23]

      Zhong J X, Zhou D W, Bai Q, Liu C, Fan X L, Zhang H H, Li C Z, Jiang R, Zhao P Y, Yuan J X, Li X J, Zhan G X, Yang H Y, Liu J, Song X F, Zhang J R, Huang X, Zhu C, Zhu C Q, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces[J]. Nat. Commun., 2024,15(1)3185. doi: 10.1038/s41467-024-47241-4

    24. [24]

      Chuhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V. Synthesis, optoelectronic properties and applications of halide perovskites[J]. Chem. Soc. Rev., 2020,49(10):2869-2885. doi: 10.1039/C9CS00848A

    25. [25]

      Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E. Rapid response through the entrepreneurial capabilities of academic scientists[J]. Nat. Nanotechnol., 2022,17(8):802-807.

    26. [26]

      Jang E, Kim Y, Won Y H, Jang H, Choi S M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays[J]. ACS Energy Lett., 2020,5(4):1316-1327. doi: 10.1021/acsenergylett.9b02851

    27. [27]

      Tamang S, Lincheneau C, Hermans Y, Jeong S, Reiss P. Chemistry of InP nanocrystal syntheses[J]. Chem. Mater., 2016,28(8):2491-2506. doi: 10.1021/acs.chemmater.5b05044

    28. [28]

      Zhao M X, Li Y, Zeng E Z, Wang C J. The application of CdSe quantum dots with multicolor emission as fluorescent probes for cell labeling[J]. Chem. Asian J., 2014,9(5):1349-1355. doi: 10.1002/asia.201301692

    29. [29]

      Peng X G, Zhang Z F, Ge J J, Deng Y L, Chen X F, Zhang J R, Deng Z T, Kambe Y, Talapin D V, Wang Y Y. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning[J]. Nat. Commun., 2023,14(1)49. doi: 10.1038/s41467-022-35702-7

    30. [30]

      Pu C, Peng X G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment[J]. J. Am. Chem. Soc., 2016,138(26):8134-8142. doi: 10.1021/jacs.6b02909

    31. [31]

      Zhang W J, Li B, Chang C, Chen F, Zhang Q, Lin Q L, Wang L, Yan J H, Wang F F, Chong Y H, Du Z L, Fan F J, Shen H B. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an antioxidation layer[J]. Nat. Commun., 2024,15(1)783. doi: 10.1038/s41467-024-44894-z

    32. [32]

      Qiu Y L, Gong Z P, Xu L, Huang Q C, Yang Z X, Ye B Q, Ye Y L, Meng Z Y, Zeng Z W, Shen Z H, Wu W B, Zhou Y Q, Hong Z Q, Cheng Z M, Ye S W, Hong H Y, Lan Q T, Li F S, Guo T L, Xu S. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer[J]. ACS Appl. Nano Mater., 2022,5(2):2962-2972. doi: 10.1021/acsanm.2c00229

    33. [33]

      Wei S, Luo X, Miao J H, Zhang L. Efficient green quantum dot lightemitting diodes enabled by high-quality alloyed gradient CdSeS/CdS/ZnS core/shell quantum dots[J]. J. Mater. Sci.: Mater. Electron., 2022,33(35):26313-26321. doi: 10.1007/s10854-022-09314-2

    34. [34]

      Roy D, Routh T, Asaithambi A V, Mandal S, Mandal P K. Spectral and temporal optical behavior of blue-, green-, orange-, and redemitting CdSe-based core/gradient alloy shell/shell quantum dots: ensemble and single-particle investigation results[J]. J. Phys. Chem. C, 2016,120(6):3483-3491. doi: 10.1021/acs.jpcc.5b10051

    35. [35]

      Bandaru S, Palanivel M, Ravipati M, Wu W Y, Zahid S, Halkarni S S, Dalapati G K, Ghosh K K, Gulyas B, Padmanabhan P, Chakrabortty S. Highly monodisperse, size tunable glucosamine conjugated CdSe quantum dots for enhanced cellular uptake and bioimaging[J]. ACS Omega, 2024,9(7):7452-7462.

    36. [36]

      Zhu Y L, Li C S, Xu Y, Wang D F. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating[J]. J. Alloy. Compd., 2014,608(25):141-147.

    37. [37]

      Ishankulov A F, Khalilov K F, Shamilov R R, Galyametdinov Y G, Mukhamadiev N K. Sizeoptical characteristics of CdSe/ZnS quantum dots modified by thiol stabilizers[J]. J. Sol-Gel Sci. Technol., 2023,108(2):292-297. doi: 10.1007/s10971-023-06096-9

    38. [38]

      Bhand G R, Chaure N B. Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method[J]. Mater. Sci. Semicond. Process, 2017,68:279-287. doi: 10.1016/j.mssp.2017.06.033

    39. [39]

      Washington A L, Strouse G F. Microwave synthetic route for highly emissive TOP/TOPS passivated CdS quantum dots[J]. Chem. Mater., 2009,21(15):3586-3592. doi: 10.1021/cm900624z

    40. [40]

      He Z Y, Zhou P J. Microwaveassisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging[J]. J. Fluoresc., 2012,22:193-199. doi: 10.1007/s10895-011-0946-8

    41. [41]

      Zhan H J, Zhou P J, Pan K L, He T, He X, Zhou C Y, He Y N. Onepot aqueous-phase synthesis of ultra-small CdSe/CdS/CdZnS coreshell-shell quantum dots with high-luminescent efficiency and good stability[J]. J. Nanopart. Res., 2013,15:1-12.

    42. [42]

      Xu J, Hu R Q, Wang Q H, Wang P, Bao H F. Extracellular biosynthesis of biocompatible CdSe quantum dots[J]. IET Nanobiotechnol., 2019,13(9):962-966. doi: 10.1049/iet-nbt.2018.5432

    43. [43]

      Órdenes-Aenishanslins N, Anziani-Ostuni G, Quezada C P, Espinoza-González R, Bravo D, Pérez-Donoso J M. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells[J]. Front. Microbiol., 2019,101587. doi: 10.3389/fmicb.2019.01587

    44. [44]

      Aqoma H, Lee S H, Imran I F, Hwang J H, Lee S H, Jang S Y. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells[J]. Nat. Energy, 2024,9:324-332. doi: 10.1038/s41560-024-01450-9

    45. [45]

      Bi C H, Yao Z W, Sun X J, Wei X C, Wang J X, Tian J J. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes[J]. Adv. Mater., 2021,33(15)2006722. doi: 10.1002/adma.202006722

    46. [46]

      Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L, Yang W Q. Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals[J]. Adv. Funct. Mater., 2020,30(19)2000026. doi: 10.1002/adfm.202000026

    47. [47]

      Zhang J B, Cai B, Zhou X, Yuan F L, Yin C Y, Wang H Y, Chen H T, Ji X Z, Liang X F, Shen C, Wang Y, Ma Z Z, Qing J, Shi Z F, Hu Z J, Hou L T, Zeng H B, Bai S, Gao F. Ligandinduced cation-π interactions enable high-efficiency, bright, and spectrally stable Rec. 2020 pure-red perovskite light-emitting diodes.[J]. Adv. Mater., 2023,35(45)2303938. doi: 10.1002/adma.202303938

    48. [48]

      DONG Y H, ZENG S Y, HAN B N, XUE J, SONG J Z, ZENG H B. BN/CsPbX3 composite nanocrystals: Synthesis and applications in white LED[J]. J. Inorg. Mater., 2019,34(1):72-78.

    49. [49]

      Jiang G C, Erdem O, Hübner R, Georgi M, Wei W, Fan X L, Wang J, Demir H V, Gaponik N. Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles[J]. Nano Res., 2021,14(4):1078-1086. doi: 10.1007/s12274-020-3152-7

    50. [50]

      Meng F Y, Liu X Y, Cai X Y, Gong Z F, Li B B, Xie W T, Li M K, Chen D C, Yip H L, Su S J. Incorporation of rubidium cations into blue perovskite quantum dot lightemitting diodes via FABr-modified multi-cation hot-injection method[J]. Nanoscale, 2019,11(3):1295-1303. doi: 10.1039/C8NR07907B

    51. [51]

      Zhang D, Yu M M, Xu Y B, Li D Y, Huang Y, Yu C, Tang C C, Lin J. Solvothermal synthesis of perovskite CsPbCl3 nanoplates and improved photoluminescence performance through postsynthetic treatment[J]. Opt. Mater., 2022,127112257. doi: 10.1016/j.optmat.2022.112257

    52. [52]

      Parveen S, Paul K K, Das R, Giri P K. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template[J]. J. Colloid Interface Sci., 2019,539:619-633. doi: 10.1016/j.jcis.2018.12.105

    53. [53]

      Wang B, Zhang C Y, Zheng W L, Zhang Q G, Bao Z Q, Kong L, Li L. Large-scale synthesis of highly luminescent perovskite nanocrystals by templateassisted solidstate reaction at 800 ℃[J]. Chem. Mater., 2019,32(1):308-314.

    54. [54]

      Zhao G G, Zhang M, Li H X, Guo Y Y, Liu T H, Wang H Q, Wang H Y, Fang Y. Velocity field distribution control in antisolvent flow realizing highly stable and efficient perovskite nanocrystals[J]. J. Colloid Interface Sci., 2023,649:214-222. doi: 10.1016/j.jcis.2023.06.114

    55. [55]

      Yuan L F, Chen D J, He K, Xu J M, Xu K Y, Hu J, Liang S S, Zhu H M. Advancing microarray fabrication: Onepot synthesis and highresolution patterning of UVcrosslinkable perovskite quantum dots[J]. Nano Res., 2024,17(9):8600-8609. doi: 10.1007/s12274-024-6784-1

    56. [56]

      Bi C H, Sun X J, Huang X, Wang S X, Yuan J F, Wang J X, Pullerits T, Tian J J. Stable CsPb1-xZnxI3 colloidal quantum dots with ultralow density of trap states for high-performance solar cells[J]. Chem. Mater., 2020,32(14):6105-6113. doi: 10.1021/acs.chemmater.0c01750

    57. [57]

      Ding N, Zhou D L, Pan G C, Xu W, Chen X, Li D Y, Zhang X H, Zhu J Y, Ji Y N, Song H W. Europiumdoped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+detection[J]. ACS Sustain. Chem. Eng., 2019,7(9):8397-8404. doi: 10.1021/acssuschemeng.9b00038

    58. [58]

      Luo Z S, Li Q, Zhang L M, Wu X T, Tan L, Zou C, Liu Y J, Quan Z W. 0D Cs3Cu2X5 (X=I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties[J]. Small, 2020,16(3)1905226. doi: 10.1002/smll.201905226

    59. [59]

      Cheng P F, Sun L, Feng L, Yang S Q, Yang Y, Zheng D Y, Zhao Y, Sang Y B, Zhang R L, Wei D H, Deng W Q, Han K L. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals[J]. Angew. Chem., 2019,131(45):16233-16237. doi: 10.1002/ange.201909129

    60. [60]

      Huang Q Q, He M X, Yang Y Q, Lai N, Zhang Q Y, Quan Y J, Liao J Y, Yang Y, Wang C, Yang J, Sun T, Wang R F. Moisture-stable CsSnBr3 quantum dots and SnO2 glass-ceramics for broadband whiteemitting diodes[J]. ACS Appl. Nano Mater., 2024,7(15):17967-17977. doi: 10.1021/acsanm.4c03202

    61. [61]

      Ma Z Z, Shi Z F, Wang L T, Zhang F, Wu D, Yang D W, Chen X, Zhang Y, Shan C X, Li X J. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices[J]. Nanoscale, 2020,12(6):3637-3645. doi: 10.1039/C9NR10075J

    62. [62]

      Tran M N, Cleveland I J, Pustorino G A, Aydil E S. Efficient nearinfrared emission from lead-free ytterbium-doped cesium bismuth halide perovskites[J]. J. Mater. Chem. A, 2021,9(22):13026-13035. doi: 10.1039/D1TA02147H

    63. [63]

      Yang Z W, Lin G L, Bai J Y, Li L C, Zhu Y B, He L R, Jiang Z, Wu W J, Yu X J, Li F S, Li W W. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes[J]. Chem. Eng. J., 2022,450138413. doi: 10.1016/j.cej.2022.138413

    64. [64]

      Zhang Y B, Qiao L L, Zhang Z Q, Liu Y F, Li L S, Shen H B, Zhao M X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells[J]. Mater. Des., 2022,219110736. doi: 10.1016/j.matdes.2022.110736

    65. [65]

      Zhao H B, Hu H L, Zheng J P, Qie Y, Yu K B, Zhu Y B, Luo Z Q, Lin L H, Yang K Y, Guo T L, Li F S. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices[J]. ACS Appl. Nano Mater., 2023,6(5):3797-3802. doi: 10.1021/acsanm.2c05498

    66. [66]

      Long R, Chen X P, Zhang X H, Chen F, Wu Z H, Shen H B, Du Z L. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device[J]. Adv. Opt. Mater., 2023,11(6)2202594. doi: 10.1002/adom.202202594

    67. [67]

      Koh S J, Eom T, Kim W D, Lee K, Lee D, Lee Y K, Kim H, Bae W K, Lee D C. Zincphosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots[J]. Chem. Mater., 2017,29(15):6346-6355. doi: 10.1021/acs.chemmater.7b01648

    68. [68]

      Chen Y R, Wang R X, Kuang Y M, Bian Y Y, Chen F, Shen H B, Chi Z, Guo L J. Suppressed auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation[J]. Nanoscale, 2023,15(46):18920-18927. doi: 10.1039/D3NR05010F

    69. [69]

      Lovingood D D, Strouse G F. Microwave induced in-situ active ion etching of growing InP nanocrystals[J]. Nano Lett., 2008,8(10):3394-3397. doi: 10.1021/nl802075j

    70. [70]

      Vikram A, Kumar V, Ramesh U, Balakrishnan K, Oh N, Deshpande K, Ewers T, Trefonas P, Shim M, Kenis P J A. A millifluidic reactor system for multistep continuous synthesis of InP/ZnSeS nanoparticles[J]. Chem. Nano Mat., 2018,4(9):943-953.

    71. [71]

      Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Multistage microfluidic platform for the continuous synthesis of Ⅲ-Ⅴ core/shell quantum dots[J]. Angew. Chem. Int. Ed., 2018,57(34):10915-10918. doi: 10.1002/anie.201805264

    72. [72]

      Okamoto A, Toda S, Hirakawa M, Bai H, Tanaka M, Seino S, Nakagawa T, Murakami H. Narrowing of the particle size distribution of InP quantum dots for green light emission by synthesis in micro-flow reactor[J]. ChemistrySelect, 2022,7(6)e202104215. doi: 10.1002/slct.202104215

    73. [73]

      Huang F, Bi C H, Guo R Q, Zheng C, Ning J J, Tian J J. Synthesis of colloidal blue-emitting InP/ZnS core/shell quantum dots with the assistance of copper cations[J]. J. Phys. Chem. Lett., 2019,10(21):6720-6726. doi: 10.1021/acs.jpclett.9b02386

    74. [74]

      Kim K H, Jo J H, Jo D Y, Han C Y, Yoon S Y, Kim Y, Kim Y H, Ko Y H, Kim S W, Lee C, Yang H. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity[J]. Chem. Mater., 2020,32(8):3537-3544. doi: 10.1021/acs.chemmater.0c00551

    75. [75]

      Du R Z, Li X Y, Li Y, Li Y X, Hou T L, Li Y M, Qiao C, Zhang J T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSexS1-x shell coating for enhanced fluorescence properties[J]. J. Phys. Chem. Lett., 2023,14(3):670-676. doi: 10.1021/acs.jpclett.2c03515

    76. [76]

      Mićić O I, Cheong H M, Fu H, Zunger A, Sprague J R, Mascarenhas A, Nozik A J. Size-dependent spectroscopy of InP quantum dots[J]. J. Phys. Chem. B, 1997,101(25):4904-4912. doi: 10.1021/jp9704731

    77. [77]

      Battaglia D, Peng X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Lett., 2002,2(9):1027-1030. doi: 10.1021/nl025687v

    78. [78]

      Wells R L, Aubuchon S R, Kher S S, Lube M S, White P S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(Ⅲ) halides and tris(trimethylsilyl) pnicogens. synthesis, characterization, and decomposition behavior of I3InP(SiMe3)3.[J]. Chem. Mater., 1995,7(4):793-800. doi: 10.1021/cm00052a027

    79. [79]

      Cros-Gagneux A, Delpech F, Nayral C, Cornejo A, Coppel Y, Bruno C. Surface chemistry of InP quantum dots: A comprehensive study[J]. J. Am. Chem. Soc., 2010,132(51):18147-18157. doi: 10.1021/ja104673y

    80. [80]

      Won Y H, Cho O, Kim T, Chung D Y, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019,575(7784):634-638. doi: 10.1038/s41586-019-1771-5

    81. [81]

      Li Y, Hou X Q, Dai X L, Yao Z L, Lv L L, Jin Y Z, Peng X G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence[J]. J. Am. Chem. Soc., 2019,141(16):6448-6452. doi: 10.1021/jacs.8b12908

    82. [82]

      Peng Y, Sheng C, Shan Y L, Bi Y H, Hu Y Q, Zeng R S, Zou B S, Wang Y J, Zhao J L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component[J]. Light. Sci. Appl., 2022,11(1)162. doi: 10.1038/s41377-022-00855-z

    83. [83]

      Chen B, Li D Y, Wang F. InP quantum dots: Synthesis and lighting applications[J]. Small, 2020,16(32)2002454. doi: 10.1002/smll.202002454

    84. [84]

      Kim T, Kim S W, Kang M, Kim S W. Large-scale synthesis of InPZnS alloy quantum dots with dodecanethiol as a composition controller[J]. J. Phys. Chem. Lett., 2012,3(2):214-218. doi: 10.1021/jz201605d

    85. [85]

      Wu Q Q, Cao F, Wang S, Wang Y M, Sun Z J, Feng J W, Liu Y, Wang L, Cao Q, Li Y G, Wei B, Wong W Y, Yang X Y. Quasi-shellgrowth strategy achieves stable and efficient green InP quantum dot light-emitting diodes[J]. Adv. Sci., 2022,9(21)2200959. doi: 10.1002/advs.202200959

    86. [86]

      Granada-Ramirez D A, Arias-Cerón J S, Pérez-González M, LunaArias J P, Cruz-Orea A, Rodríguez-Fragoso P, Herrera-Pérez J L, Gómez-Herrera M L, Tomás S A, Vázquez-Hernández F, Durán-Ledezma A A, Mendoza-Alvarez J G. Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots[J]. Appl. Surf. Sci., 2020,530147294. doi: 10.1016/j.apsusc.2020.147294

    87. [87]

      Pidluzhna A, Stakhira P, Baryshnikov G, Zavaraki A J, Ågren H. InP/ZnS quantum dots synthesis and photovoltaic application[J]. Appl. Nanosci., 2023,13(7):4969-4975. doi: 10.1007/s13204-022-02658-5

    88. [88]

      Ramasamy P, Ko K J, Kang J W, Lee J S. Two-step"seed-mediated" synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence[J]. Chem. Mater., 2018,30(11):3643-3647. doi: 10.1021/acs.chemmater.8b02049044

    89. [89]

      Hu R R, He F K, Hou R X, Wu Z H, Zhang X T, Shen H B. The narrow synthetic window for highly homogenous InP quantum dots toward narrow red emission[J]. Inorg. Chem., 2024,63(7):3516-3524. doi: 10.1021/acs.inorgchem.3c04358

    90. [90]

      Stone D, Li X, Naor T, Dai J K, Remennik S, Banin U. Size and emission control of wurtzite InP nanocrystals synthesized from Cu3-xP by cation exchange[J]. Chem. Mater., 2023,35(24):10594-10605. doi: 10.1021/acs.chemmater.3c02226

    91. [91]

      Beberwyck B J, Alivisatos A P. Ion exchange synthesis of Ⅲ-Ⅴ nanocrystals[J]. J. Am. Chem. Soc., 2012,134(49):19977-19980. doi: 10.1021/ja309416c

    92. [92]

      Shan X Y, Li B H, Ji B T. Synthesis of wurtzite In and Ga phosphide quantum dots through cation exchange reactions[J]. Chem. Mater., 2021,33(13):5223-5232. doi: 10.1021/acs.chemmater.1c01287

    93. [93]

      Gerbec J A, Magana D, Washington A, Strouse G F. Microwave-enhanced reaction rates for nanoparticle synthesis[J]. J. Am. Chem. Soc., 2005,127(45):15791-15800. doi: 10.1021/ja052463g

    94. [94]

      Siramdas R, McLaurin E J. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching[J]. Chem. Mater., 2017,29(5):2101-2109. doi: 10.1021/acs.chemmater.6b04457

    95. [95]

      Edel J B, Fortt R, deMello J C, deMello A J. Microfluidic routes to the controlled production of nanoparticles[J]. Chem. Commun., 2002(10):1136-1137. doi: 10.1039/b202998g

    96. [96]

      Kim K, Jeong S, Woo J Y, Han C S. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs[J]. Nanotechnology, 2012,23(6)065602. doi: 10.1088/0957-4484/23/6/065602

    97. [97]

      Thomas A, Nair P V, Thomas K G. InP quantum dots: An environmentally friendly material with resonance energy transfer requisites[J]. J. Phys. Chem. C, 2014,118(7):3838-3845. doi: 10.1021/jp500125v

    98. [98]

      Tran A, Valleix R, Matic M, Sleiman M, Cisnetti F, Boyer D. Environmentally friendly InP quantum dots as a visible-light catalyst for water treatment[J]. Environ. Sci.: Nano, 2023,10(7):1749-1753. doi: 10.1039/D3EN00158J

    99. [99]

      Ziegler J, Xu S, Kucur E, Meister F, Batentschuk M, Gindele F, Nann T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs[J]. Adv. Mater., 2008,20(21):4068-4073. doi: 10.1002/adma.200800724

    100. [100]

      Yin L Q, Zhang D D, Yan Y X, Cao F, Lin G L, Yang X Y, Li W W, Zhang J H. Applying InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots to prepare WLED with enhanced photoluminescence performances[J]. J. Phys. Chem. C, 2020,8:154683-154690.

    101. [101]

      Karadza B, Avermaet H V, Mingabudinova L, Hens Z, Meuret Y. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots[J]. Photonics Res., 2022,10(1):155-165. doi: 10.1364/PRJ.428843

    102. [102]

      Li Q H, Bai J K, Huang M L, Li L, Liao X Q, Wang L F, Xu B, Jin X. High-performance, environmentally friendly solid-phase color converted-based quantum dots white light-emitting diodes[J]. J. Lumin., 2023,255119560. doi: 10.1016/j.jlumin.2022.119560

    103. [103]

      Zhang Z L, Liu D, Li D Z, Huang K K, Zhang Y, Shi Z, Xie R G, Han M Y, Wang Y, Yang W S. Dual emissive Cu: InP/ZnS/InP/ZnS nanocrystals: Single-source"greener"emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes[J]. Chem. Mater., 2015,27(4):1405-1411. doi: 10.1021/cm5047269

    104. [104]

      Lim J, Bae W K, Lee D, Nam M K, Jung J, Lee C, Char K, Lee S. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability[J]. Chem. Mater., 2011,23(20):4459-4463. doi: 10.1021/cm201550w

    105. [105]

      Lim J, Park M, Bae W K, Lee D, Lee S, Lee C, Char K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots[J]. ACS Nano, 2013,7(10):9019-9026. doi: 10.1021/nn403594j41377-022-00855-zle2019090145

    106. [106]

      Jo J H, Kim J H, Lee K H, Han C Y, Jang E P, Do Y R, Yang H. High-efficiency red electroluminescent device based on multishelled InP quantum dots[J]. Opt. Lett., 2016,41(17):3984-3987. doi: 10.1364/OL.41.003984

    107. [107]

      Kim H Y, Park Y J, Kim J W, Han C J, Lee J, Kim Y, Greco T, Ippen C, Wedel A, Ju B K, Oh M S. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode[J]. Adv. Funct. Mater., 2016,26(20):3454-3461. doi: 10.1002/adfm.201505549

    108. [108]

      Kim H J, Shin M H, Lee J Y, Kim J H, Kim Y J. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a pat‐ terned quantum dot film[J]. Opt. Express., 2017,25(10):10724-10734. doi: 10.1364/OE.25.010724

    109. [109]

      Ahn S W, Ko M, Yoon S, Oh J H, Yang Y, Kim S H, Song J K, Do Y R. InP/ZnSeS/ZnS quantum dotembedded alumina microbeads for color-by-blue displays[J]. ACS Appl. Nano Mater., 2022,5(11):16070-16081. doi: 10.1021/acsanm.2c02638

    110. [110]

      Weng Y L, Chen S Y, Zhang Y G, Sun L, Wu Y, Yan Q, Guo T L, Zhou X T, Wu C X. Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route[J]. Opt. Laser Technol., 2021,140107026. doi: 10.1016/j.optlastec.2021.107026

    111. [111]

      Lee J Y, Kim E A, Han J, Choi Y H, Hahm D, Kang C J, Bae W K, Lim J, Cho S Y. Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO[J]. Adv. Mater. Interfaces, 2022,9(22)2200835. doi: 10.1002/admi.202200835

    112. [112]

      Tian W Y, Wu T X, Wu Y S, Xiao J Q, Wang P K, Li J H. Application of InP quantum dot film by photolithography technology on a micro-LED display[J]. ECS J. Solid State Sci. Technol., 2023,12(4)046003. doi: 10.1149/2162-8777/acc5b0

    113. [113]

      Lee J Y, Kim E A, Choi Y, Han J, Hahm D, Shin D, Bae W K, Lim J, Cho S Y. High-resolution multicolor patterning of InP quantum dot films by atomic layer deposition of ZnO[J]. ACS Photonics, 2023,10(8):2598-2607. doi: 10.1021/acsphotonics.3c00332

    114. [114]

      Castelletto S, Boretti A. Luminescence solar concentrators: A technology update[J]. Nano Energy, 2023,109108269. doi: 10.1016/j.nanoen.2023.108269

    115. [115]

      Sadeghi S, Jalali H B, Melikov R, Kumar B G, Aria M M, Ow-Yang C W, Nizamoglu S. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators[J]. ACS Appl. Mater. Interfaces, 2018,10(15):12975-12982. doi: 10.1021/acsami.7b19144

    116. [116]

      Jalali H B, Sadeghi S, Baylam I, Han M, Ow-Yang C W, Sennaroglu A, Nizamoglu S. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators[J]. Nano Res., 2021,14(5):1488-1494. doi: 10.1007/s12274-020-3207-9

    117. [117]

      Eren G O, Sadeghi S, Shahzad M, Nizamoglu S. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area[J]. STAR Protoc., 2021,2(3)100664. doi: 10.1016/j.xpro.2021.100664

    118. [118]

      Kum H, Dai Y S, Aihara T, Slocum MA, Tayagaki T, Fedorenko A, Polly S J, Bittner Z, Sugaya T, Hubbard S M. Two-step photon absorption in InP/InGaP quantum dot solar cells[J]. Appl. Phys. Lett., 2018,113(4)043902. doi: 10.1063/1.5037238

    119. [119]

      Wu J P, Li M H, Jiang Y, Xu Q L, Xian L D, Guo H D, Wan J, Wen R, Fang Y Y, Xie D M, Lei Y, Hu J S, Lin Y. Carrier management via Integrating InP quantum dots into electron transport layer for efficient perovskite solar cells[J]. ACS Nano, 2022,16(9):15063-15071. doi: 10.1021/acsnano.2c06171

    120. [120]

      Kuang Y J, Sun K, Sukrittanon S, Takabayashi K, Kamiya I, Lewis N S, Tu C W. Enhancement of the performance of GaP solar cells by embedded In(N)P quantum dots[J]. Nano Energy, 2015,15:782-788. doi: 10.1016/j.nanoen.2015.06.003

    121. [121]

      Yang S L, Zhao P X, Zhao X C, Qu L T, Lai X C. InP and Sn: InP based quantum dot sensitized solar cells[J]. J. Mater. Chem. A, 2015,3(43):21922-21929. doi: 10.1039/C5TA04925C

    122. [122]

      Yu S, Xie Z H, Ran M X, Wu F, Zhong Y Q, Dan M, Zhou Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide[J]. J. Colloid Interface Sci., 2020,573:71-77. doi: 10.1016/j.jcis.2020.03.110

    123. [123]

      Bang J W, Das S, Yu E J, Kim K, Lim H, Kim S, Hong J W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction[J]. Nano Lett., 2020,20(9):6263-6271. doi: 10.1021/acs.nanolett.0c00983

    124. [124]

      Zhao H Y, Li X, Cai M K, Liu C, You Y M, Wang R, Channa A I, Lin F, Huo D, Xu G F, Tong X, Wang Z M. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highlyefficient and stable photoelectrochemical cell[J]. Adv. Energy Mater., 2021,11(31)2101230. doi: 10.1002/aenm.202101230

    125. [125]

      Zeng S J, Tan W J, Si J H, Mao L H, Shi J W, Li Y R, Hou X. Ultrafast electron transfer in InP/ZnSe/ZnS quantum dots for photocatalytic hydrogen evolution[J]. J. Phys. Chem. Lett., 2022,13(39):9096-9102. doi: 10.1021/acs.jpclett.2c02147

    126. [126]

      Chon B, Choi S, Seo Y, Lee H S, Kim C H, Son H J, Kang S O. InP-quantum dot surface-modified TiO2 catalysts for sustainable photochemical carbon dioxide reduction[J]. ACS Sustain. Chem. Eng., 2022,10(18):6033-6044. doi: 10.1021/acssuschemeng.2c00938

    127. [127]

      Chakraborty I N, Roy S, Devatha G, Rao A, Pillai P P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions[J]. Chem. Mater., 2019,31(7):2258-2262. doi: 10.1021/acs.chemmater.9b00086

    128. [128]

      Zhang J, Wang J, Yan T, Peng Y N, Xu D J, Deng D W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging[J]. J. Mater. Chem. B, 2017,5(41):8152-8160. doi: 10.1039/C7TB02324C

    129. [129]

      Lim M, Lee W, Bang G, Lee W J, Park Y, Kwon Y, Jung Y, Kim S, Bang J. Synthesis of far-redand near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation[J]. Nanoscale, 2019,11(21):10463-10471. doi: 10.1039/C9NR02192B

    130. [130]

      Zhang Y B, Lv Y B, Li L S, Zhao X J, Zhao M X, Shen H B. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis[J]. Exploration, 2022,2(4)20220082. doi: 10.1002/EXP.20220082

    131. [131]

      Ham K M, Kim M, Bock S, Kim J, Kim W, Jung H S, An J, Song H, Kim J W, Kim H M, Rho W Y, Lee S H, Park S M, Kim D E, Jun B H. Highly bright silica-coated InP/ZnS quantum dot-embedded silica nanoparticles as biocompatible nanoprobes[J]. Int. J. Mol. Sci., 2022,23(18)10977. doi: 10.3390/ijms231810977

    132. [132]

      Jalali H B, Aria M M, Dikbas U M, Sadeghi S, Kumar B G, Sahin M, Kavakli I H, Ow-Yang C W, Nizamoglu S. Effective neural photostimulation using indium-based type-Ⅱ quantum dots[J]. ACS Nano, 2018,12(8):8104-8114. doi: 10.1021/acsnano.8b02976

    133. [133]

      Karatum O, Aria M M, Eren G O, Yildiz E, Melikov R, Srivastava S B, Surme S, Dogru I B, Jalali H B, Ulgut B, Sahin A, Kavakli I H, Nizamoglu S. Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons[J]. Front. Neurosci., 2021,15652608. doi: 10.3389/fnins.2021.652608

    134. [134]

      Gao Z X, Ju X, Zhang H Z, LiuX H, Chen H Y, Li W F, Zhang H L, Liang L Y, Cao H T. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation[J]. Adv. Funct. Mater., 2023,33(52)2305959. doi: 10.1002/adfm.202305959

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    14. [14]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    19. [19]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    20. [20]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

Metrics
  • PDF Downloads(26)
  • Abstract views(1164)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return