Citation: Shenhao QIU, Qingquan XIAO, Huazhu TANG, Quan XIE. First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104 shu

First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe

  • Corresponding author: Qingquan XIAO, qqxiao@gzu.edu.cn
  • Received Date: 1 April 2024
    Revised Date: 31 August 2024

Figures(5)

  • The electronic structure, magnetic, and optical properties of two-dimensional(2D) GaSe doped with rare earth elements X (X=Sc, Y, La, Ce, Eu) were calculated using the first-principles plane wave method based on density functional theory. The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indirect bandgap of 2.661 1 eV. The spin-up and spin-down channels of Sc-, Y-, and La-doped 2D GaSe are symmetric, they are non-magnetic semiconductors. The magnetic moments of Ce- and Eu- doped 2D GaSe are 0.908μB and 7.163μB, which are magnetic semiconductors. Impurity energy levels appear in both spin-up and spin-down channels of Eu-doped 2D GaSe, which enhances the probability of electron transition. Compared with intrinsic 2D GaSe, the static dielectric constant of the doped 2D GaSe increases, and the polarization ability is strengthened. The absorption spectrum of the doped 2D GaSe shifts in the low-energy direction, and the red-shift phenomenon occurs, which extends the absorption spectral range. The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region, and the improvement of Eu-doped 2D GaSe is the most obvious.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene[J]. Nature, 2012,490(7419):192-200. doi: 10.1038/nature11458

    3. [3]

      Geim A K, Novoselov K S. The rise of graphene[J]. Nat. Mater., 2007,6(3):183-191. doi: 10.1038/nmat1849

    4. [4]

      Sengupta K, Baskaran G. Tuning Kondo physics in graphene with gate voltage[J]. Phys. Rev. B, 2008,77(4)045417. doi: 10.1103/PhysRevB.77.045417

    5. [5]

      Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nat. Photonics, 2015,9(4):247-252. doi: 10.1038/nphoton.2015.23

    6. [6]

      Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Sci. Rep., 2015,58501. doi: 10.1038/srep08501

    7. [7]

      Liu C X, Dai Z H, Hou J, Zhang L L, Gu S T. First-principles study for the electric field influence on electronic and optical properties of AlN/g-C3N4 heterostructure[J]. J. Appl. Phys., 2023,133(16)164902. doi: 10.1063/5.0145052

    8. [8]

      Du Y, Zhao Q, Liu R F, Jiang T S. Preparation of g-C3N4 nanosheet/WO3/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced visible light photocatalytic activity[J]. J. Clust. Sci., 2022,34:273-283.

    9. [9]

      FU S S, XIAO Q Q, YAO Y M, ZOU M Z, TANG H Z, YE J F, XIE Q. First principles study of the effect of nitrogen defects on the electronic structure and optical property of GaN/g-C3N4 heterojunction[J]. Chinese J. Inorg. Chem., 2023,39(9):1721-1728.  

    10. [10]

      Ji Y J, Dong H L, Hou T J, Li Y Y. Monolayer graphitic germanium carbide (g-GeC): The promising cathode catalyst for fuel cell and lithium-oxygen battery applications[J]. J. Mater. Chem. A, 2018,6(5):2212-2218. doi: 10.1039/C7TA10118J

    11. [11]

      Kang M A, Kim S J, Song W, Chang S J, Park C Y, Myung S, Lim J S, Lee S S, An K S. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method[J]. Carbon, 2017,116:167-173. doi: 10.1016/j.carbon.2017.02.001

    12. [12]

      AN M Y, XIE Q, QIAN G L, LIANG Q, CHEN R, ZHANG H S, WANG Y F. First-principles study on the transition metal atoms X (X=Mn, Fe, Co) doped Janus WSSe monolayer[J]. Chinese J. Inorg. Chem., 2023,39(02):272-280.

    13. [13]

      Zhao Y F, Fuh H R, Coileáin C Ó, Cullen C P, Stimpel-Lindner T J, Duesberg G S, Moreira Ó L C, Zhang D, Cho J, Choi M, Chun B S, Chang C R, Wu H C. Highly sensitive, selective, stable, and flexible NO2 sensor based on GaSe[J]. Adv. Mater. Technol., 2020,5(4)1901085. doi: 10.1002/admt.201901085

    14. [14]

      Xiong R, Hu R, Zhang Y G, Yang X H, Lin P, Wen C L, Sa B S, Sun Z M. Computational discovery of PtS2/GaSe van der Waals heterostructure for solar energy applications[J]. Phys. Chem. Chem. Phys., 2021,23(36):20163-20173. doi: 10.1039/D1CP02436A

    15. [15]

      Wang H, Liu Y, Li M, Huang H, Zhong M Y, Shen H. Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells[J]. Appl. Phys. A Mater. Sci. Process., 2009,97(1):25-29. doi: 10.1007/s00339-009-5369-x

    16. [16]

      Jiang T F, Xu C, Zhang Y H, Xue H G, Tian J Q. Wet chemical epitaxial growth of a cactus-like CuFeO2/ZnO heterojunction for improved photocatalysis[J]. Dalton Trans., 2020,49(31):11027-11027. doi: 10.1039/D0DT90140G

    17. [17]

      Wang B, Wang G Z, Yuan H K, Kuang A L, Chang J L, Huang Y H, Chen H. Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting[J]. Physical E, 2020,118113896. doi: 10.1016/j.physe.2019.113896

    18. [18]

      Hu P A, Wen Z Z, Wang L F, Tan P H, Xiao K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012,6(7):5988-5994. doi: 10.1021/nn300889c

    19. [19]

      Li X F, Lin M W, Puretzky A A, Idrobo J C, Ma C, Chi M F, Yoon M, Rouleau C M, Kravchenko I I, Geohegan D B, Xiao K. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse[J]. Sci. Rep., 2014,45497. doi: 10.1038/srep05497

    20. [20]

      Sorokin S V, Avdienko P S, Sedova I V, Kirilenko D A, Yagovkina M A, Smirnov A N, Davydov V Y, Ivanov S V. Molecular-beam epitaxy of two-dimensional GaSe layers on GaAs(001) and GaAs(112) substrates: Structural and optical properties[J]. Semiconductors, 2019,53(8):1131-1137. doi: 10.1134/S1063782619080189

    21. [21]

      Gutiérrez Y, Santos G, Giangregorio M M, Dicorato S, Palumbo F, Saiz J M, Moreno F, Losurdo M. Quick and reliable colorimetric reflectometry for the thickness determination of low-dimensional GaS and GaSe exfoliated layers by optical microscopy[J]. Opt. Mater. Express, 2021,11(11):3697-3705. doi: 10.1364/OME.435157

    22. [22]

      Tang W Q, Ke C M, Fu M M, Wu Y P, Zhang C M, Lin W, Lu S Q, Wu Z M, Yang W H, Kang J Y. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer[J]. Phys. Lett. A, 2018,382(9):667-672. doi: 10.1016/j.physleta.2018.01.005

    23. [23]

      Hou T Y, Zhou Q, Zeng W. Cr3-doped GaSe monolayer as an innovative sensor and scavenger for Cl2, NO, and SO2: A DFT study[J]. J. Mater. Res. Technol., 2022,19:4463-4472. doi: 10.1016/j.jmrt.2022.07.006

    24. [24]

      Ke C M, Wu Y P, Guo G Y, Wu Z M, Kang J Y. Electrically controllable magnetic properties of Fe-doped GaSe monolayer[J]. J. Phys. D: Appl. Phys., 2019,52(17)175001. doi: 10.1088/1361-6463/ab03e9

    25. [25]

      Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V. Electronic properties of GaSe/MoS2 and GaS/MoSe2 heterojunctions from first principles calculations[J]. AIP Adv., 2018,8(7)075207. doi: 10.1063/1.5033348

    26. [26]

      Ao L, Xiao H Y, Xiang X, Li S, Liu K Z, Huang H, Zu X T. Functionalization of a GaSe monolayer by vacancy and chemical element doping[J]. Phys. Chem. Chem. Phys., 2015,17(16):10737-10748. doi: 10.1039/C5CP00397K

    27. [27]

      Liu Z Y, Li H. Studying the electronic, magnetic, and optical properties of vacancy-doped ZnO with rare earth elements by first principles[J]. Russ. J. Phys. Chem. A, 2023,97(14):3346-3352. doi: 10.1134/S0036024424030373

    28. [28]

      Wang L, Zhang J M, He T, Wang K, Xie Q. First principle study on the effect of the photoelectric properties of (La, Ce)-doping Mn4Si7[J]. Mater. Res. Express, 2019,6(9)096309. doi: 10.1088/2053-1591/ab2f15

    29. [29]

      Tian X H, Zhao L, Luan Z H, Chang H, Sun D, Tan C L, Huang Y W. First-principles study on electronic and magnetic and optical properties of rare-earth metals (RE=La, Ce, Nd) doped phosphorene[J]. Ferroelectrics, 2018,529(1):80-89. doi: 10.1080/00150193.2018.1448614

    30. [30]

      Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev. B, 1994,49(20):14251-14269. doi: 10.1103/PhysRevB.49.14251

    31. [31]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    32. [32]

      Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond[J]. J. Comput. Chem., 2008,29(13):2044-2078. doi: 10.1002/jcc.21057

    33. [33]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758

    34. [34]

      Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    35. [35]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    36. [36]

      Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992,46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671

    37. [37]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    38. [38]

      Batista E R, Heyd J, Hennig R G, Uberuaga B P, Martin R L, Scuseria G E, Umrigar C J, Wilkins J W. Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects[J]. Phys. Rev. B, 2006,74(12)121102. doi: 10.1103/PhysRevB.74.121102

    39. [39]

      Ke C M, Wu Y P, Guo G Y, Lin W, Wu Z M, Zhou C J, Kang J Y. Tuning the electronic, optical, and magnetic properties of monolayer GaSe with a vertical electric field[J]. Phys. Rev. Appl., 2018,9(4)044029. doi: 10.1103/PhysRevApplied.9.044029

    40. [40]

      Koëbel A, Zheng Y, Pétroff J F, Eddrief M, Vinh L T, Sébenne C. A transmission electron microscopy structural analysis of GaSe thin films grown on Si(111) substrates[J]. J. Cryst. Growth, 1995,154(3):269-274.

    41. [41]

      Gillan M J. Calculation of the vacancy formation energy in aluminium[J]. J. Phys.-Condens.Matter, 1989,1(4):689-711. doi: 10.1088/0953-8984/1/4/005

    42. [42]

      Wang Z D, Wei X M, Huang Y H, Zhang J M, Yang J. High solar-to-hydrogen efficiency in AsP/GaSe heterojunction for photocatalytic water splitting: A DFT study[J]. Mater. Sci. Semicond. Process, 2023,159107393. doi: 10.1016/j.mssp.2023.107393

    43. [43]

      Ge C P, Wang B Y, Yang H D, Feng Q Y, Huang S Z, Zu X T, Li L, Deng H X. Direct Z-scheme GaSe/ZrS2 heterojunction for overall water splitting[J]. Int. J. Hydrog. Energy, 2023,48(36):13460-13469. doi: 10.1016/j.ijhydene.2022.12.247

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    3. [3]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    4. [4]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    7. [7]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    13. [13]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    14. [14]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    17. [17]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    18. [18]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    19. [19]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    20. [20]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

Metrics
  • PDF Downloads(4)
  • Abstract views(317)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return