Citation: Zeyu XU, Anlei DANG, Bihua DENG, Xiaoxin ZUO, Yu LU, Ping YANG, Wenzhu YIN. Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099 shu

Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement

Figures(8)

  • The improved Hummers method was used to obtain GOQDs from flake graphite, which contained rich hydroxyl and carboxyl groups. With the as-fabricated GOQDs in hand, we constructed a GOQDs/OVA nano-vaccine using chicken ovalbumin (OVA) as a model antigen to evaluate the immune efficacy and safety. Results showed that GOQDs/OVA nano-vaccine had high water dispersibility and stability with a diameter of around 5 nm for 30 d. The maximum loading capacity of GOQDs for OVA was about 500 mg·g-1, and release rates of OVA were 74.65% and 56.93% in pH 5.5 and 7.4 after 24 h, respectively, displaying pH stimulus responsive release merits. With the concentration of GOQDs below 500 μg·mL-1, the biosecurity of GOQDs indicated that they were not causing hemolysis, cell damage, and pathological changes in important tissues. After immunization, GOQDs/OVA nano-vaccines could excite the high levels of immunoglobulin G (IgG), immunoglobulin G1 (IgG1), and immunoglobulin G2a (IgG2a) antibodies and improve secretions of interleukin-1β (IL-1β), interleukin-4 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), compared with the group of OVA alone. Meanwhile, GOQDs promoted an increase in the percentage of CD4+ and CD8+ T lymphocytes in the spleen.
  • 加载中
    1. [1]

      Sun B N, Yu S, Zhao D Y, Guo S H, Wang X H, Zhao K. Polysaccharides as vaccine adjuvants[J]. Vaccine, 2018,36(35):5226-5234. doi: 10.1016/j.vaccine.2018.07.040

    2. [2]

      HAN B, TANG S Q, ZHU D W, LI H L, FENG Y L, SUN C F, XU Y N, LENG H Y, WANG Y T, ZHANG Y M, TAI X C, ZHANG Y. Research progress of novel vaccine adjuvants[J]. China Animal Husbandry & Veterinary Medicine, 2023,50(6):2460-2467.  

    3. [3]

      Huang S M, Li B W, Ashraf U, Li Q, Lu X C, Gao X C, Cui M, Imran M, Ye J, Cao F F, Gu J J, Cao S B. Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses[J]. ACS Appl. Nano Mater., 2020,3(9):9449-9461. doi: 10.1021/acsanm.0c02062

    4. [4]

      Du G S, Qin M, Sun X. Recent progress in application of nanovaccines for enhancing mucosal immune responses[J]. Acta Pharm. Sin. B, 2023,13(6):2334-2345. doi: 10.1016/j.apsb.2022.08.010

    5. [5]

      Li S X, Bennett Z T, Sumer B D, Gao J M. Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanoparticles[J]. Acc. Chem. Res., 2020,53(11):2546-2557. doi: 10.1021/acs.accounts.0c00475

    6. [6]

      Yan H, Lin G B, Liu Z Y, Gu F, Zhang Y. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles[J]. Acta Biomater., 2023,161:213-225. doi: 10.1016/j.actbio.2023.02.034

    7. [7]

      Mao L Z, Ma P Q, Luo X, Cheng H W, Wang Z X, Ye E, Loh X J, Wu Y L, Li Z. Stimuli-responsive polymeric nanovaccines toward next-generation immunotherapy[J]. ACS Nano, 2023,17(11):9826-9849. doi: 10.1021/acsnano.3c02273

    8. [8]

      Wang X L, Gao X L, Wang L X, Lin J H, Liu Y. Advances of nanotechnology toward vaccine development against animal infectious diseases[J]. Adv. Funct. Mater., 2023,33(46)2305061. doi: 10.1002/adfm.202305061

    9. [9]

      WANG H J, YIN G. Orange emission graphene oxide quantum dots: A one-pot strategy for highly efficient fabrication and application in the imaging of pH in living cells[J]. Chinese J. Inorg. Chem, 2023,39(7):1338-1448.  

    10. [10]

      Li S, Guo Z, Zeng G D, Zhang Y, Xue W, Liu Z H. Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization[J]. ACS Biomater. Sci. Eng., 2018,4(1):142-150. doi: 10.1021/acsbiomaterials.7b00370

    11. [11]

      Zhao L H, Shu M Y, Chen H L, Shi K L, Li Z Y. Preparation of graphene oxide-stabilized pickering emulsion adjuvant for Pgp3 recombinant vaccine and enhanced immunoprotection against chlamydia trachomatis infection[J]. Front. Immunol., 2023,141148253. doi: 10.3389/fimmu.2023.1148253

    12. [12]

      Huang S Y, Li Y Y, Zhang S, Chen Y M, Su W Q, Sanchez D J, Mai J D H, Zhi X, Chen H J, Ding X T. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine[J]. J. Control Release, 2024,365:716-728. doi: 10.1016/j.jconrel.2023.11.047

    13. [13]

      Qin Y R, Zhou Z W, Pan S T, He Z X, Zhang X J, Qiu J X, Duan W, Yang T X, Zhou S F. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated thp-1 macrophages[J]. Toxicology, 2015,327:62-76. doi: 10.1016/j.tox.2014.10.011

    14. [14]

      Du T, Liang J G, Dong N, Liu L, Fang L R, Xiao S B, Han H Y. Carbon dots as inhibitors of virus by activation of type Ⅰ interferon response[J]. Carbon, 2016,110:278-285. doi: 10.1016/j.carbon.2016.09.032

    15. [15]

      Xiao Y Q, Pang Y X, Yan Y X, Qian P, Zhao H T, Manickam S, Wu T, Pang C H. Synthesis and functionalization of graphene materials for biomedical applications: Recent advances, challenges, and perspectives[J]. Adv. Sci., 2023,10(9)e2205292. doi: 10.1002/advs.202205292

    16. [16]

      Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant[J]. Int. Immunopharmacol., 2023,125111062. doi: 10.1016/j.intimp.2023.111062

    17. [17]

      Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,80(6)1339. doi: 10.1021/ja01539a017

    18. [18]

      Liu H H, Xu A, Feng Z J, Long D, Chen X Y, Lu M. pH-dependent fluorescent quenching of graphene oxide quantum dots: Towards hydroxyl[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2020,260114627. doi: 10.1016/j.mseb.2020.114627

    19. [19]

      Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4(8):4806-4014. doi: 10.1021/nn1006368

    20. [20]

      Yang Y X, Huo D Q, Wu H X, Wang X F, Yang J S, Bian M H, Ma Y, Hou C J. N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer[J]. Sens. Actuator B-Chem., 2018,274:296-303. doi: 10.1016/j.snb.2018.07.130

    21. [21]

      Liu Y J, Ying D Y, Cai Y X, Le X Y. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization[J]. Food Hydrocolloids, 2017,72:304-311. doi: 10.1016/j.foodhyd.2017.06.007

    22. [22]

      Cui L, Ren X, Wang J, Sun M T. Synthesis of homogeneous carbon quantum dots by ultrafast dualbeam pulsed laser ablation for bioimaging[J]. Mater. Today Nano, 2020,12100091. doi: 10.1016/j.mtnano.2020.100091

    23. [23]

      Hafermann M J, Namdar R, Seibold G E, Lee R. Effect of intravenous ondansetron on qt interval prolongation in patients with cardiovascular disease and additional risk factors for torsades: a prospective, observational study[J]. Drug Healthc. Patient Saf., 2011,3:53-58.

    24. [24]

      Colby L A, Quenee L E, Zitzow L A. Considerations for infectious disease research studies using animals[J]. Comparative Med., 2017,67(3):222-231.

    25. [25]

      Tang S H, Huang Y Y, Zheng J. Salivary excretion of renal-clearable silver nanoparticles[J]. Angew. Chem. Int. Ed., 2020,59(45):19894-19898. doi: 10.1002/anie.202008416

    26. [26]

      Poon W, Zhang Y N, Ouyang B, Kingston B R, Wu J L Y, Wilhelm S, Chan W C W. Elimination pathways of nanoparticles[J]. ACS Nano, 2019,13(5):5785-5798. doi: 10.1021/acsnano.9b01383

    27. [27]

      LI P J, YAO F G. Effect of ginseng ling yangxin tang on blood biochemical and cardiac function indices in patients with chronic heart faliure and evaluation of the safety of drug administrstion[J]. Clinical Research, 2023,31(10):111-114.  

    28. [28]

      Boehm O, Zur B, Koch A, Tran N, Freyenhagen R, Hartmann M, Zacharowski K. Clinical chemistry reference database for Wistar rats and C57/Bl6 mice[J]. Biol. Chem., 2007,388(5):547-554. doi: 10.1515/BC.2007.061

    29. [29]

      Kurapati R, Mukherjee S P, Martín C, Bepete G, Vázquez E, Pénicaud A, Fadeel B, Bianco A. Degradation of single-layer and few-layer graphene by neutrophil myeloperoxidase[J]. Angew. Chem. Int. Ed., 2018,57(36):11722-11727. doi: 10.1002/anie.201806906

    30. [30]

      Zhao L, Seth A, Wibowo N, Zhao C X, Mitter N, Yu C, Middelberg A P. Nanoparticle vaccines[J]. Vaccine, 2014,32(3):327-337. doi: 10.1016/j.vaccine.2013.11.069

    31. [31]

      Habib A, Anjum K M, Iqbal R, Jaffar G, Ashraf Z, Khalid M S, Taj M U, Zainab S W, Umair M, Zohaib M, Khalid T. Vaccine adjuvants: Selection criteria, mechanism of action associated with immune responses and future directions[J]. Iran. J. Immunol., 2023,20(1):1-15.

    32. [32]

      Nguyen B, Tolia N H. Protein-based antigen presentation platforms for nanoparticle vaccines[J]. npj Vaccines, 2021,6(1)70.

    33. [33]

      Barinov A, Galgano A, Krenn G, Tanchot C, Vasseur F, Rocha B. CD4/CD8/dendritic cell complexes in the spleen: CD8+T cells can directly bind CD4+T cells and modulate their response[J]. PLoS One, 2017,12(7)e0180644.

    34. [34]

      Pondeljak N, Lugovic-mihic L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters[J]. Clin. Ther., 2020,42(5):757-770.

    35. [35]

      Kalinski P, Wieckowski E, Muthuswamy R, De Jong E. Generation of stable Th1/CTL-, Th2-, and Th17-inducing human dendritic cells//Naik S H. Dendritic Cell Protocols. 2nd ed. New York: Humana Press, 2010, 595: 117-133

    36. [36]

      Kilgore P B, Sha J, Andersson J A, Motin V L, Chopra A K. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform[J]. npj Vaccines, 2021,6(1)21.

    37. [37]

      Lam J H, Baumgarth N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses[J]. Nat. Commun., 2023,14(1)3979.

  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(2)
  • Abstract views(419)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return