Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis
- Corresponding author: Xuehong WANG, wxhsnow@ecust.edu.cn Jie WEI, jiewei7860@sina.com Deqiang WANG, Derek_wang@ecust.edu.cn
Citation:
Shipeng WANG, Shangyu XIE, Luxian LIANG, Xuehong WANG, Jie WEI, Deqiang WANG. Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(10): 1919-1931.
doi:
10.11862/CJIC.20240094
Khare D, Basu B, Dubey A K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications[J]. Biomaterials, 2020,258120280.
Wu H, Dong H, Tang Z, Chen Y, Liu Y C, Wang M, Wei X H, Wang N, Bao S S, Yu D M, Wu Z G, Yang Z D, Li X K, Guo Z, Shi L. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation[J]. Biomaterials, 2023,293121990. doi: 10.1016/j.biomaterials.2022.121990
Li G L, Li Z H, Min Y J, Chen S L, Han R J, Zhao Z. 3D-printed piezoelectric scaffolds with shape memory polymer for bone regeneration[J]. Small, 2023,19(40)2302927. doi: 10.1002/smll.202302927
Wu J, Wei Y H, Lan J P, Hu X Y, Gao F L, Zhang X Y, Gao Z X, Liu Q Q, Sun Z Y, Chen R, Zhao H Q, Fan K L, Yan X Y, Zhuang J, Huang X L. Screening of protein-based ultrasmall nanozymes for building cell-mimicking catalytic vesicles[J]. Small, 2022,18(39)2202145. doi: 10.1002/smll.202202145
Pan M M, Ouyang Y, Song Y L, Si L Q, Jiang M, Yu X, Xu L, Willner I. Au3+-functionalized UIO-67 metal-organic framework nanoparticles: ·O2- and ·OH generating nanozymes and their antibacterial functions[J]. Small, 2022,18(23)2200548. doi: 10.1002/smll.202200548
Kwon K, Jung J, Sahu A, Tae G. Nanoreactor for cascade reaction between SOD and CAT and its tissue regeneration effect[J]. J. Control. Release., 2022,344:160-172. doi: 10.1016/j.jconrel.2022.02.033
Wu R B, Liu Z, Huang Y, Huang L Z, Wang J H, Ding H, Wang Z, Li Q J, Zhu C, Liu L M, Zhang L, Feng G J. Hollow cobalt sulfide nanospheres with highly enzyme-like antibacterial activities to accelerate infected wound healing[J]. Bioconjug. Chem., 2023,34(10):1902-1913. doi: 10.1021/acs.bioconjchem.3c00403
Wu M Q, Zhang Z Y, Liu Z R, Zhang J M, Zhang Y L, Ding Y M, Huang T, Xiang D L, Wang Z, Dai Y J, Wan X Y, Wang S B, Qian H L, Sun Q J, Li L L. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing[J]. Nano Today, 2021,37101104. doi: 10.1016/j.nantod.2021.101104
Chen S M, Liu F W, Xin H, Wen D, Zhang Y A, Li B, Han Y. Boosting MRSA infectious osteoporosis treatment: Mg-doped nanofilm on vacancy-enriched TiO2 coating for providing in situ sonodynamic bacteria-killing and osteogenic alkaline microenvironment[J]. Adv. Funct. Mater., 2024,34(11)2311965. doi: 10.1002/adfm.202311965
Feng X B, Lei J, Ma L, Ouyang Q L, Zeng Y X, Liang H, Lei C C, Li G C, Tan L, Liu X M, Yang C. Ultrasonic interfacial engineering of MoS2-modified Zn single-atom catalysts for efficient osteomyelitis sonodynamic ion therapy[J]. Small, 2022,18(8)2105775. doi: 10.1002/smll.202105775
Zhao Y C, Wang S B, Ding Y M, Zhang Z Y, Huang T, Zhang Y L, Wan X Y, Wang Z L, Li L L. Piezotronic effect-augmented Cu2-x-O-BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy[J]. ACS Nano, 2022,16(6):9304-9316. doi: 10.1021/acsnano.2c01968
Wang C F, Sun W C, Xiang Y M, Wu S L, Zheng Y F, Zhang Y, Shen J, Yang L, Liang C Y, Liu X M. Ultrasound-activated piezoelectric MoS2 enhances sonodynamic for bacterial killing[J]. Small Sci., 2023,3(7)2300022. doi: 10.1002/smsc.202300022
Rosso J M, Volnistem E A, Santos I A, Bonadio T G M, Freitas V F. Lead-free NaNbO3-based ferroelectric perovskites and their polar polymer-ceramic composites: Fundamentals and potentials for electronic and biomedical applications[J]. Ceram. Int., 2022,48(14):19527-19541. doi: 10.1016/j.ceramint.2022.04.089
LIU Y B, YU W S, WANG J X, DONG X T, FU Z D, LIU G X. Application of bismuth-based nanomaterials in imaging diagnosis and therapy for cancer[J]. Chinese J. Inorg. Chem., 2021,37(1):1-15.
Chen Q X, Yao Y, Wang J, Zhao L. Phase structure and piezoelectric properties in K/Bi co-doped AgNbO3 lead-free ceramics[J]. Ceram. Int., 2024,50(3):5699-5706. doi: 10.1016/j.ceramint.2023.11.347
Tang M L, Zhang Z C, Sun T D, Li B, Wu Z G. Manganese-based nanozymes: Preparation, catalytic mechanisms, and biomedical a pplications[J]. Adv. Healthc. Mater., 2022,11(21)2201733. doi: 10.1002/adhm.202201733
Liu F, Huang B, Tang T, Wang F J, Cui R, Zhang M X, Sun T L. Near-infrared-IIb fluorescent nanozymes for imaging-guided treatment of traumatic brain injury[J]. Chem. Eng. J., 2023,471144697. doi: 10.1016/j.cej.2023.144697
Yadav A, Sahoo S, Singh S, Raevski I P, Sarun P M. Influence of Mndoping on the structure, high-temperature dielectric, and conductive properties of NaNbO3 ceramics[J]. Mat. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2023,297116796. doi: 10.1016/j.mseb.2023.116796
Babeer A M, Ezzeldien M, Ali A F, Mahmoud A. Moderation of [Bi3+/Na1+] molar ratio for enhancement of dielectric and energy storage properties of NaNbO3 ceramics[J]. Phys. Scripta, 2024,99(5)055901. doi: 10.1088/1402-4896/ad358a
Chen J T, Zhu K J, Liang P H, Wu M, Rao Y, Zheng H J, Liu J S, Yan K, Wang J. Ultrahigh reversible lithium storage of hierarchical porous Co-Mo oxides via graphene encapsulation and hydrothermal S-doping[J]. J. Mater. Chem. A, 2022,10(10):5373-5380. doi: 10.1039/D1TA10531K
Nithya R, Rgupathy S, Sakthi D, Arun V, Kannadasan N. A study on Mn doped ZnO loaded on CSAC for the photocatalytic degradation of brilliant green dye[J]. Chem. Phys. Lett., 2020,755137769. doi: 10.1016/j.cplett.2020.137769
Sun J S, Cao J X, Jiang X H. Preparation and photoelectric properties of Bi doped ZnO nanoarrays[J]. J. Alloy. Compd., 2022,896162801. doi: 10.1016/j.jallcom.2021.162801
Zheng X H, Li Y L, You W L, Lei G C, Cao Y N, Zhang Y F, Jiang L L. Construction of Fe-doped TiO2-x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S[J]. Chem. Eng. J., 2022,430(2)132917.
Tian B S, Tian R X, Liu S H, Wang Y, Gai S L, Xie Y, Yang D, He F, Yang P P, Lin J. Doping engineering to modulate lattice and electronic structure for enhanced piezocatalytic therapy and ferroptosis[J]. Adv. Mater., 2023,35(38)2304262. doi: 10.1002/adma.202304262
Du Y Q, Yang J N, He F, Zhao X D, Zhou J L, Zang P Y, Liu C L, Xie Y, Zhang Y Q, Yang P P. Revealing the mutually enhanced mechanism of necroptosis and immunotherapy induced by defect engineering and piezoelectric effect[J]. Adv. Mater., 2023,36(6)2304322.
HU Z W, DONG W X, BAO Q F, LI P. Preparation and piezocatalytic properties of rubik's cube-like nano-microstructure BaTiO3[J]. Chinese J. Inorg. Chem., 2023,39(3):475-484.
Song K, Du J, Wang X, Zheng L L, Ouyang R Z, Li Y H, Miao Y Q, Zhang D W. Biodegradable bismuth-based nano-heterojunction for enhanced sonodynamic oncotherapy through charge separation engineering[J]. Adv. Healthc. Mater., 2022,11(11)2102503.
Zhu P, Chen Y, Shi J L. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity[J]. Adv. Mater., 2020,32(29)2001976.
Wang Q Q, Tian Y, Yao M, Fu J K, Wang L Z, Zhu Y C. Bimetallic organic frameworks of high piezovoltage for sono-piezo dynamic therapy[J]. Adv. Mater., 2023,35(41)2301784.
Tian B S, Tian R X, Liu S H, Wang Y, Gai S L, Xie Y, Yang D, He F, Yang P P, Lin J. Doping engineering to modulate lattice and electronic structure for enhanced piezocatalytic therapy and ferroptosis[J]. Adv. Mater., 2023,35(38)2304262.
Wei J W, Xia J, Liu X, Ran P, Zhang G Y, Wang C M, Li X H. Hollow-structured BaTiO3 nanoparticles with cerium-regulated defect engineering to promote piezocatalytic antibacterial treatment[J]. Appl. Catal. B-Environ. Energy, 2023,328122520.
Yu C Y, He J J, Tan M X, Hou Y X, Zeng H, Liu C B, Meng H M, Su Y J, Qiao L J, Lookman T, Bai Y. Selective enhancement of photo-piezocatalytic performance in BaTiO3 via heterovalent ion doping[J]. Adv. Funct. Mater., 2023,33(44)2310927.
Liu J, Zhu Y, Fan Y, Gong L, Zhu X H, Zhang Y Y, Liu M L, Yao S Z. The pH-dependent multiple nanozyme activities of copper-cerium dioxide and its application in regulating intracellular oxygen and hydrogen peroxide levels[J]. J. Colloid Interface Sci., 2024,654:1054-1062.
Cai L H, Du J J, Han F P, Shi T C, Zhang H, Lu Y, Long S R, Sun W, Fan J L, Peng X J. Piezoelectric metal-organic frameworks based sonosensitizer for enhanced nanozyme catalytic and sonodynamic therapies[J]. ACS Nano, 2023,17(8):7901-7910.
Deng R X, Zhou H, Qin Q X, Ding L, Song X R, Chang M Q, Chen Y, Zhou Y. Palladium-catalyzed hydrogenation of black barium titanate for multienzyme-piezoelectric synergetic tumor therapy[J]. Adv. Mater., 2023,36(9)2307568.
Yang Y W, Zan J, Shuai Y, Yang L Y, Zhang L M, Zhang H Q, Wang D S, Peng S P, Shuai C J. In situ growth of a metal-organic framework on graphene oxide for the chemo-photothermal therapy of bacterial infection in bone repair[J]. ACS Appl. Mater. Interface, 2022,14(9):21996-22005.
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
Jingjie Tang , Luying Xie , Jiayu Liu , Shangyu Shi , Xinyu Sun , Jiayang Lin , Qikun Yang , Chuan'ang Yu , Zecheng Wang , Yingying Wang , Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
(a, c) pH=5.5; (d) pH=5.5, US power: 0.5 W·cm-2, H2O2: 10 mmol·L-1.
US power: 0.5 W·cm-2, *p < 0.05, vs Control.
US power: 1.5 W·cm-2, *p < 0.05, vs Control.
US power: 1.5 W·cm-2, *p < 0.05, vs Control.
US power: 1.5 W·cm-2.