Citation: Liang MA, Honghua ZHANG, Weilu ZHENG, Aoqi YOU, Zhiyong OUYANG, Junjiang CAO. Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075 shu

Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy

  • Corresponding author: Honghua ZHANG, 15270008537@163.com
  • Received Date: 7 March 2024
    Revised Date: 11 July 2024

Figures(12)

  • Ordered single-layer polystyrene (PS) microsphere arrays were fabricated by using the gas/liquid interface self-assembly method, and then employed as a template, single-layer hexagonal nonclose packed Au nanoparticle arrays were prepared by combining magnetron sputtering deposition method as well as heat treatment technology. Sub-sequently, highly ordered ZIF-8/Au composite nanostructure arrays were successfully obtained by using the hydrothermal method. The growth mechanism of composite nanostructure arrays and the effects of reaction temperature as well as time on the microstructure and optical properties were explored. Moreover, the sensitivity and uniformity of surface-enhanced Raman scattering (SERS) signals obtained from Ag film-decorated nanostructure arrays were further investigated. The results indicated that when the hydrothermal reaction temperature increased from 25 to 100 ℃, the number and size of ZIF-8 nanoparticles gradually increased, and the surface plasmon resonance (SPR) and diffraction peaks both red-shifted. When the hydrothermal reaction time increased from 10 to 60 min, ZIF-8 nanoparticles appeared from selective growth around Au nanoparticles to spread throughout the material surface. After depositing a specific thickness of Ag film onto the obtained array surface, the detection limits of Raman sig-nals from both 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) probe molecules were 10-11 mol·L-1. The SERS peak intensity located at 1 430 cm-1 (4-ATP) and 1 355 cm-1 (R6G) showed a linear relationship with the concentra-tion of each molecular solution, and the correlation coefficients R2 were 0.980 1 and 0.984 4, respectively. The rela-tive standard deviation (RSD) was 8.86% by comparison to the peak intensity located at 1 430 cm-1 obtained from 4-ATP molecules (10-5 mol·L-1) measured at 10 randomly selected positions on the arrays. It indicated that ordered ZIF-8/Au composite nanostructure arrays as SERS enhanced substrate exhibited good stability and uniformity.
  • 加载中
    1. [1]

      Wang H, Carly S, Naomi J H. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates[J]. J. Am. Chem. Soc., 2005,127(43):14992-14993. doi: 10.1021/ja055633y

    2. [2]

      Men D D, Zhou F, Hang L F, Li X Y, Duan G T, Cai W P, Li Y. A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor[J]. J. Mater. Chem. C, 2016,4(11):2117-2122. doi: 10.1039/C5TC04281J

    3. [3]

      Zhang T, Sun Y Q, Hang L F, Li H L, Liu G Q, Zhang X M, Lyu X J, Cai W P, Li Y. Periodic porous alloyed Au-Ag nanosphere arrays and their highly sensitive SERS performance with good reproducibility and high density of hotspots[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9792-9801. doi: 10.1021/acsami.7b17461

    4. [4]

      Li W J, Xiang J H, Men D D, Zhang H H. 2D Au nanosphere arrays/PVA-PBA-modified-hydrogel composite film for glucose detection with strong diffraction intensity and linear response[J]. Nanomaterials, 2019,9(2)140. doi: 10.3390/nano9020140

    5. [5]

      Kim J K, Shi X J, Jeong M J, Park J, Han H S, Kim S H, Guo Y, Heinz T F, Fan S H, Lee C L, Park J H, Zheng X L. Enhancing Mo: BiVO4 solar water splitting with patterned Au nanospheres by plasmon‑ induced energy transfer[J]. Adv. Energy Mater., 2018,8(5)1701765. doi: 10.1002/aenm.201701765

    6. [6]

      Liu D L, Li C C, Zhou F, Zhang T, Liu G Q, Cai W P, Li Y. Capillary gradient-induced self-assembly of periodic Au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water interface[J]. Adv. Mater. Interfaces, 2017,4(10)1600976. doi: 10.1002/admi.201600976

    7. [7]

      Jian C C, Zhang J Q, He W M, Ma X C. Au-Al intermetallic compounds: A series of more efficient LSPR materials for hot carriers-based applications than noble metal Au[J]. Nano Energy, 2021,82105763. doi: 10.1016/j.nanoen.2021.105763

    8. [8]

      Tian Y Y, Chen Y C, Chen M, Song Z L, Xiong B, Zhang X B. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag+ detection by LSPR spectroscopy[J]. Talanta, 2021,221121627. doi: 10.1016/j.talanta.2020.121627

    9. [9]

      Gu M, Liu D, Ding T, Liu X K, Chen T, Shen X Y, Yao T. Plasmon-assisted photocatalytic CO2 reduction on Au decorated ZrO2 catalysts[J]. Dalton Trans., 2021,50(18):6076-6082. doi: 10.1039/D1DT00385B

    10. [10]

      Yu G Y, Qian J, Zhang P, Zhang B, Zhang W X, Yan W F, Liu G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor[J]. Nat. Commun., 2019,10(1)4912. doi: 10.1038/s41467-019-12853-8

    11. [11]

      WANG C, XIANG J H, ZHANG T, MEN D D, QIU X F, ZHANG H H. Controlled preparation of ordered arrays of Pt nanoparticles with different morphologies and their optical properties[J]. Rare Metal Materials and Engineering, 2018,47(9):2807-2812.

    12. [12]

      Liu J, Goetjen T A, Wang Q N, Knapp J G, Wasson M C, Yang Y, Syed Z H, Delferro M, Notestein J M, Farha O K, Hupp J T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization[J]. Chem. Soc. Rev., 2022,51(3):1045-1097. doi: 10.1039/D1CS00968K

    13. [13]

      Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF) based and MOF-derived nanocatalysis[J]. Chem. Rev., 2019,120(2):1438-1511.

    14. [14]

      Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021,33(17)2006042. doi: 10.1002/adma.202006042

    15. [15]

      WANG X, WANG J, LIU J S. Preparation and electrochemical properties of cathode material AI-ABTC/RGO@S for lithium sulfur battery[J]. Rare Metal Materials and Engineering, 2022,51(1):190-196.

    16. [16]

      Hang L F, Zhou F, Men D D, Li H L, Li X Y, Zhang H H, Liu G Q, Cai W P, Li C C, Li Y. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks[J]. Nano Res., 2017,10:2257-2270. doi: 10.1007/s12274-016-1414-1

    17. [17]

      MA T T, LI S M, ZHANG C Y, XU L, BAI Y Y, FU Y L, JI W J, YANG H Y. Nitrogen doped with the preparation of porous carbon and super capacitor performance[J]. Chinese J. Inorg. Chem., 2024,40(4):725-735.

    18. [18]

      Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF-based membranes for gas separations[J]. Chem. Rev., 2020,120(16):8161-8266. doi: 10.1021/acs.chemrev.0c00119

    19. [19]

      Wang Y H, Jin H, Ma Q, Mo K, Mao H Z, Feldhoff A, Cao X Z, Li Y S, Pan F S, Jiang Z Y. A MOF glass membrane for gas separation[J]. Angew. Chem., 2020,132(11):4395-4399. doi: 10.1002/ange.201915807

    20. [20]

      Dai H, Yuan X Z, Jiang L B, Wang H, Zhang J, Zhang J J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coord. Chem. Rev., 2021,441213985. doi: 10.1016/j.ccr.2021.213985

    21. [21]

      Taheri M, Ashok D, Sen T, Enge T G, Verma N K, Tricoli A, Lowe A, Nisbet D, Tsuzuki T. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties[J]. Chem. Eng. J., 2021,413127511. doi: 10.1016/j.cej.2020.127511

    22. [22]

      Tuncel D, Ökte A N. Improved adsorption capacity and photoactivity of ZnO-ZIF-8 nanocomposites[J]. Catal. Today, 2021,361:191-197. doi: 10.1016/j.cattod.2020.04.014

    23. [23]

      Wang X B, Liu J, Leong S, Lin X C, Wei J, Kong B, Xu Y F, Low Z X, Yao J F, Wang H T. Rapid construction of ZnO@ZIF-8 heterostructures with size selective photocatalysis properties[J]. ACS Appl. Mater. Interfaces, 2016,8(14):9080-9087. doi: 10.1021/acsami.6b00028

    24. [24]

      Panchariya D K, Rai R K, Kumar E A, Singh S K. Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage[J]. ACS Omega, 2018,3(1):167-175. doi: 10.1021/acsomega.7b01693

    25. [25]

      Kumari G, Jayaramulu K, Maji T K, Narayana C. Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study[J]. J. Phys. Chem., 2013,117(43):11006-11012. doi: 10.1021/jp407792a

    26. [26]

      Wa ng, Q X, Sun Y, Li S F, Zhang P P, Yao Q Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy[J]. RSC Adv., 2020,10(62):37600-37620. doi: 10.1039/D0RA07950B

    27. [27]

      Yang K, Zong S F, Zhang Y Z, Qian Z T, Liu Y, Zhu K, Li L, Li N, Wang Z Y, Cui Y P. Array-assisted SERS microfluidic chip for highly-sensitive and multiplex gas sensing[J]. ACS Appl. Mater., 2019,12(1):1395-1403.

    28. [28]

      Xia Z P, Li D, Deng W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin film microextraction[J]. Anal. Chem., 2021,93(11):4924-4931. doi: 10.1021/acs.analchem.0c05348

    29. [29]

      Zhu J, Zhang S, Weng G J, Li J J, Zhao J W. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice[J]. Spectrochim. Acta. Part A, 2021,262120108. doi: 10.1016/j.saa.2021.120108

    30. [30]

      Li X L, Zhang Y Z, Shen Z X, Fan H G. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering[J]. Small, 2012,8(16):2548-2554. doi: 10.1002/smll.201200576

    31. [31]

      Dong S, Shi Q Y, He K L, Wu J W, Zhu Z X, Feng J G. A simple aptamer SERS sensor based on mesoporous silica for the detection of chlorpyrifos[J]. Foods, 2022,11(21)3331. doi: 10.3390/foods11213331

    32. [32]

      Qin Y Z, Mo F, Yao S, Wu Y Z, He Y S, Yao W X. Facile synthesis of porous Ag crystals as SERS sensor for detection of five methamphetamine analogs[J]. Molecules, 2022,27(12)3939. doi: 10.3390/molecules27123939

    33. [33]

      Zhang H H, Wang C, Li H L, Jiang L F, Men D D, Wang J, Xiang J H. Physical process-aided fabrication of periodic Au-M (M=Ag, Cu, Ag-Cu) alloyed nanoparticle arrays with tunable localized surface plasmon resonance and diffraction peaks[J]. RSC Adv., 2018,8(17):9134-9140. doi: 10.1039/C7RA13567J

    34. [34]

      Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. J. Am. Chem. Soc., 2018,140(5):1812-1823. doi: 10.1021/jacs.7b11589

    35. [35]

      Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m

    36. [36]

      Xie S Y, Chen D, Gu C J, Jiang T, Zeng S W, Wang Y Y, Ni Z H, Shen X, Zhou J. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance[J]. ACS Appl. Mater. Interfaces, 2021,13(28):33345-33353. doi: 10.1021/acsami.1c03848

    37. [37]

      Yu L, Feng L X, Xiong L, Li S, Xu Q, Pan X Y, Xiao Y X. Multifunctional nanoscale lanthanide metal organic framework based ratiometric fluorescence paper microchip for visual dopamine assay[J]. Nanoscale, 2021,13(25):11188-11196.

  • 加载中
    1. [1]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Dawei Zhang Yuqian Zhao Mingyu Jiao Yan Wang . Cultivation of Students’ Critical Thinking in the Practice of Ideological and Political in Organic Chemistry Courses: Taking the Discrimination and Analysis of Chemical Rumors as Examples. University Chemistry, 2025, 40(4): 181-188. doi: 10.12461/PKU.DXHX202405211

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(18)
  • Abstract views(1071)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return