Citation: Bo YANG, Gongxuan LÜ, Jiantai MA. Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063 shu

Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer

  • Corresponding author: Gongxuan LÜ, gxlu@lzb.ac.cn
  • Received Date: 27 February 2024
    Revised Date: 21 September 2024

Figures(16)

  • This work studied the corrosion and corrosion inhibition of nickel-cobalt bimetallic phosphide (Ni-Co-P) in aqueous solution. The results show that Ni-Co-P could react with H2O to produce H2, while Ni2+, Co2+, and PO43- ions were released into water. The nickel-to-cobalt ratio affects the reaction rate of Ni-Co-P with H2O, and increased Co content in Ni-Co-P leads to decreased corrosion rate. The influence factors, such as pH value, oxygen content, light, and temperature on the corrosion of Ni-Co-P(nNi/nCo=1/2) prepared with an initial nickel-to-cobalt ratio of 1∶2 in water were studied in detail. To inhibit the corrosion of Ni-Co-P(nNi/nCo=1/2) in aqueous solution, a strategy of coating an inert TiO2 protective layer was put forward. The TiO2 protective layer could effectively reduce the corrosion of Ni-Co-P in water and enhance its stability.
  • 加载中
    1. [1]

      ZHEN W L, NING X F, YANG B J, WU Y Q, LI Z, LU G X. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill[J]. Appl. Catal. B-Environ, 2018,221:243-257. doi: 10.1016/j.apcatb.2017.09.024

    2. [2]

      TIAN B, LI Z, ZHEN W L, LU G X. Uniformly sized (112) facet Co2P on graphene for highly effective photocatalytic hydrogen evolution[J]. J. Phys. Chem. C, 2016,120(12):6409-6415. doi: 10.1021/acs.jpcc.6b00680

    3. [3]

      ZHEN W L, GUO Y P, WU Y Q, LU G X. Co-P/graphene alloy catalysts doped with Cu and Ni for efficient photocatalytic hydrogen generation[J]. New J. Chem., 2017,41(22):13804-13811. doi: 10.1039/C7NJ01598D

    4. [4]

      YANG B, LÜ G X, MA J T. Electrocatalytic water splitting over nickel iron hydroxide-cobalt phosphide composite electrode[J]. J. Inorg. Mater., 2024,39(4):374-382.

    5. [5]

      WANG S S, YU B. Preparation of (NiCo)2P/NF self-supporting electrode and its electrocatalytic water splitting[J]. Journal of Molecular Catalysis (China), 2020,34(1):81-86.

    6. [6]

      LU Y K, LIU C C, XU S J, LIU Y, JIANG D L, ZHU J J. Facile synthesis of hierarchical NiCoP nanosheets/NiCoPnanocubes homojunction electrocatalyst for highly efficient and stable hydrogen evolution reaction[J]. Appl. Surf. Sci., 2021,565150537. doi: 10.1016/j.apsusc.2021.150537

    7. [7]

      CHEN B H, JIANG Z J, WANG Y J, YAN H H, JIANG Z Q. In-situ single-phase derived NiCoP/CoP hetero-nanoparticles on aminated-carbon nanotubes as highly efficient pH-universal electrocatalysts for hydrogen evolution[J]. Electrochim. Acta, 2022,416140280. doi: 10.1016/j.electacta.2022.140280

    8. [8]

      XUE N N, WANG Z J, ZHANG W Q, LIU Z, QIAO W, LI N, DONG J P, CHEN J C. Preparation of NiCoP/CdS and its photocatalytic activity in hydrogen evolution[J]. Modern Chemical Industry, 2019,39(10):56-60.

    9. [9]

      LIN S Y, ZENG C M. Enhanced photocatalytic property of TiO2 semiconductor by modification of cocatalyst NiCoP[J]. Materials Reports, 2019,33(24):4046-4050. doi: 10.11896/cldb.18110194

    10. [10]

      SU J, LIU Y X, JIANG N, JIANG B L, WANG Y Y, WANG X Q, CHEN Y G, SONG H. Fabrication of nitrogen-doped carbon on NiCoP electrocatalyst with flower-like structure for efficient hydrogen evolution reaction in alkaline solution[J]. J. Alloy. Compd., 2024,970172287. doi: 10.1016/j.jallcom.2023.172287

    11. [11]

      SONG S L, SONG A L, BAI L, DUANMU M, WANG L X, DONG H F, QIN X J, SHAO G J. Hierarchical design of homologous NiCoP/NF from layered double hydroxides as a long-term stable electrocatalyst for hydrogen evolution[J]. Catalysts, 2023,13(9)1232. doi: 10.3390/catal13091232

    12. [12]

      LI Y J, ZHANG H C, JIANG M, KUANG Y, SUN X M, DUAN X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting[J]. Nano Res., 2016,9(8):2251-2259. doi: 10.1007/s12274-016-1112-z

    13. [13]

      LI C M, WU H H, DU Y H, XI S B, DONG H J, WANG S H, WANG Y. Mesoporous 3D/2D NiCoP/g-C3N4 heterostructure with dual Co—N and Ni—N bonding states for boosting photocatalytic H2 production activity and stability[J]. ACS Sustain. Chem. Eng., 2020,8(34):12934-12943. doi: 10.1021/acssuschemeng.0c03496

    14. [14]

      MA W Y, ZHENG D W, XIAN Y X, HU X H, ZHANG Q, WANG S Y, CHENG C L, LIU J, WANG P. Efficient hydrogen evolution under visible light by bimetallic phosphide NiCoP combined with g-C3N4/CdS S-scheme heterojunction[J]. ChemCatChem, 2021,13(20):4403-4410. doi: 10.1002/cctc.202100833

    15. [15]

      DENG L L, FANG N J, WU S L, SHU S, CHU Y H, GUO J X, CEN W L. Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H2 evolution[J]. J. Colloid Interface Sci., 2022,608:2730-2739. doi: 10.1016/j.jcis.2021.10.190

    16. [16]

      WANG K, XIE H Y, LI Y J, WANG G R, JIN Z L. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution[J]. J. Colloid Interface Sci., 2022,628:64-78.

    17. [17]

      YANG B, LÜ G X, ZHANG X Q, MA J T. Nickel phosphide corrosion induced by water and corrosion inhibition[J]. Chinese J. Inorg. Chem., 2022,38(7):1337-1349.

    18. [18]

      YANG B, ZHEN W L, MA J T, LU G X. Corrosion inhibition and stability enhancement of cobalt phosphide in aqueous solution by coating TiO2 layer[J]. Int. J. Hydrog. Energy, 2023,48(94):36784-36794. doi: 10.1016/j.ijhydene.2023.06.089

    19. [19]

      ZHANG H J, LI X P, HÄHNEL A, NAUMANN V, LIN C, AZIMI S, SCHWEIZER S L, MAIJENBURG A W, WEHRSPOHN R B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Adv. Funct. Mater., 2018,28(14)1706847. doi: 10.1002/adfm.201706847

    20. [20]

      ZHU G X, XI C Y, SHEN M Q, BAO C L, ZHU J. Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor[J]. ACS Appl. Mater. Interfaces, 2014,6(19):17208-17214. doi: 10.1021/am505056d

    21. [21]

      XIONG S L, CHEN J S, LOU X W, ZENG H C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties[J]. Adv. Funct. Mater., 2012,22(4):861-871. doi: 10.1002/adfm.201102192

    22. [22]

      MAHMOOD N, TAHIR M, MAHMOOD A, ZHU J H, CAO C B, HOU Y L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density[J]. Nano Energy, 2015,11:267-276. doi: 10.1016/j.nanoen.2014.11.015

    23. [23]

      TANG C, ZHANG R, LU W B, WANG Z, LIU D N, HAO S, DU G, ASIRI A M, SUN X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst[J]. Angew. Chem.-Int. Edit., 2017,56(3):842-846. doi: 10.1002/anie.201608899

    24. [24]

      PAN Y, LIU Y R, ZHAO J C, YANG K, LIANG J L, LIU D D, HU W H, LIU D P, LIU Y Q, LIU C G. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. J. Mater. Chem. A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A

    25. [25]

      TIAN J Q, LIU Q, ASIRI A M, SUN X P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. J. Am. Chem. Soc., 2014,136(21):7587-7590. doi: 10.1021/ja503372r

    26. [26]

      YOU B, JIANG N, SHENG M L, BHUSHAN M W, SUN Y J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J]. ACS Catal., 2016,6(2):714-721. doi: 10.1021/acscatal.5b02193

    27. [27]

      ZHU Y P, LIU Y P, REN T Z, YUAN Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation[J]. Adv. Funct. Mater., 2015,25(47):7337-7347. doi: 10.1002/adfm.201503666

    28. [28]

      WANG Z Q, ZENG S, LIU W H, WANG X W, LI Q W, ZHAO Z G, GENG F X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9(2):1488-1495. doi: 10.1021/acsami.6b13075

    29. [29]

      POPCZUN E J, READ C G, ROSKE C W, LEWIS N S, SCHAAK R E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles[J]. Angew. Chem.-Int. Edit., 2014,53(21):5427-5430. doi: 10.1002/anie.201402646

    30. [30]

      DONG J L, ZHANG X Q, LU G X, WANG C W. Generation of enhanced stability of SnO/In(OH)3/InP for photocatalytic water splitting by SnO protection layer[J]. Front. Energy, 2021,15(3):710-720. doi: 10.1007/s11708-021-0764-x

    31. [31]

      NING X F, LU G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting[J]. Nanoscale, 2020,12(3):1213-1223. doi: 10.1039/C9NR09183A

    32. [32]

      NING X F, ZHEN W L, ZHANG X Q, LU G X. Assembly of ultra-thin NiO layer over Zn1-xCdxS for stable visible-light photocatalytic overall water splitting[J]. ChemSusChem, 2019,12(7):1410-1420. doi: 10.1002/cssc.201802926

    33. [33]

      ZHANG X Q, LÜ G X. Thin film protection strategy of Ⅲ-Ⅴ semiconductor photoelectrode for water splitting[J]. Prog. Chem., 2020,32(9):1368-1375.

    34. [34]

      ZHANG X Q, LU G X, WU Y Q, DONG J L, WANG C W. TiO2 protection layer and well-matched interfaces enhance the stability of Cu2ZnSnS4/CdS/TiO2 for visible light driven water splitting[J]. Catal. Sci. Technol., 2021,11(16):5505-5517. doi: 10.1039/D1CY00853F

    35. [35]

      NING X F, LI J, YANG B J, ZHEN W L, LI Z, TIAN B, LU G X. Inhibition of photocorrosion of CdS via assembling with thin film TiO2 and removing formed oxygen by artificial gill for visible light overall water splitting[J]. Appl. Catal. B-Environ., 2017,212:129-139. doi: 10.1016/j.apcatb.2017.04.074

    36. [36]

      JIA M Z, NING X F, LU G X. Stable and wide spectrum response Zn3As2/Al2O3 photocatalyst for photocatalytic overall water splitting[J]. Int. J. Hydrog. Energy, 2024,51:1366-1374. doi: 10.1016/j.ijhydene.2023.11.099

    37. [37]

      CHI M Y, SUN X I, LOZANO-BLANCO G, TATARCHUK B J. XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments[J]. Appl. Surf. Sci., 2021,570151147. doi: 10.1016/j.apsusc.2021.151147

    38. [38]

      KIM H, LIM J, LEE S, KIM H H, LEE C, LEE J, CHOI W. Spontaneous generation of H2O2 and hydroxyl radical through O2 reduction on copper phosphide under ambient aqueous condition[J]. Environ. Sci. Technol., 2019,53(5):2918-2925. doi: 10.1021/acs.est.8b06353

    39. [39]

      HAN Z Z, NING X F, YIN Z Q, ZHEN W L, LU G X, SU B T. Enhancement of photocatalytic activity for overall water splitting by inhibiting reverse reactions and photocorrosion of C3N4 via modified with TiO2 thin layer[J]. Int. J. Hydrog. Energy, 2024,59:856-865. doi: 10.1016/j.ijhydene.2024.02.089

    40. [40]

      ZHANG X Q, LU G X, NING X F, WANG C W. Boron substitution enhanced activity of BxGa1-xAs/GaAs photocatalyst for water splitting[J]. Appl. Catal. B-Environ., 2022,300120690. doi: 10.1016/j.apcatb.2021.120690

    41. [41]

      JIA M Z, LU G X. 750 nm visible light-driven overall water splitting to H2 and O2 over Boron-doped Zn3As2 photocatalyst[J]. Appl. Catal. B-Environ., 2023,338123045. doi: 10.1016/j.apcatb.2023.123045

    42. [42]

      LI, HE, ZHANG, ABDUKADER A. Modification of metal organic framework materials and their application in photo-catalytic hydrogen evolution[J]. Journal of Molecular Catalysis (China), 2023,37(1):94-107.

    43. [43]

      GAO W, ZHANG W Y, TIAN B, ZHEN W L, WU Y Q, ZHANG X Q, LU G X. Visible light driven water splitting over CaTiO3/Pr3+-Y2SiO5/RGO catalyst in reactor equipped artificial gill[J]. Appl. Catal. B-Environ., 2018,224:553-562. doi: 10.1016/j.apcatb.2017.10.072

    44. [44]

      GAO W, TIAN B, ZHANG W Y, ZHANG X Q, WU Y Q, LU G X. NIR light driven catalytic hydrogen generation over semiconductor photocatalyst coupling up-conversion component[J]. Appl. Catal. B-Environ., 2019,257117908. doi: 10.1016/j.apcatb.2019.117908

    45. [45]

      GAO W, ZHANG W Y, LU G X. A two-pronged strategy to enhance visible-light-driven overall water splitting via visible-to-ultraviolet upconversion coupling with hydrogen-oxygen recombination inhibition[J]. Appl. Catal. B-Environ., 2017,212:23-31. doi: 10.1016/j.apcatb.2017.04.063

    46. [46]

      ZHENG H Q, FAN Y T. Study of photocatalytic hydrogen production performance and mechanism of 'open butterfly'[2Fe2S] compounds[J]. Journal of Molecular Catalysis (China), 2023,37(4):331-341.

    47. [47]

      ZHANG Z Y, SHI C C, ZHANG X, MI Y. Carbazole-based covalent organic frameworks for photocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis (China), 2023,37(4):367-374.

    48. [48]

      DING S Y, CUI X H, FENG J, LU G X, WANG W. Facile synthesis of —C=N— linked covalent organic frameworks under ambient conditions[J]. Chem. Commun., 2017,53(87):11956-11959. doi: 10.1039/C7CC05779B

    49. [49]

      WEI J Y, LIU L, LU J R. Porphyrin-modified g-C3N4 to enhance the photocatalytic hydrogen production activity[J]. Journal of Molecular Catalysis (China), 2023,37(5):439-451.

    50. [50]

      TIAN B, WU Y Q, LU G X. Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting[J]. Appl. Catal. B-Environ., 2021,280119410. doi: 10.1016/j.apcatb.2020.119410

    51. [51]

      ZHANG X Q, TIAN B, ZHEN W L, LI Z, WU Y Q, LU G X. Construction of mobius-strip-like graphene for highly efficient charge transfer and high active hydrogen evolution[J]. J. Catal., 2017,354:258-269. doi: 10.1016/j.jcat.2017.08.021

    52. [52]

      ZHANG W Y, YANG S L, LI J, GAO W, DENG Y B, DONG W P, ZHAO C J, LU G X. Visible-to-ultraviolet upconvertion: Energy transfer, material matrix, and synthesis strategies[J]. Appl. Catal. B-Environ., 2017,206:89-103. doi: 10.1016/j.apcatb.2017.01.023

    53. [53]

      WANG M, LU G X. Improved light harvesting and efficiency for overall water splitting by embedding TiO2 transition layer in GaP/Ga2O3/Ga2Se3 multijunction photocatalyst[J]. Sol. RRL, 2021,5(6)2000619. doi: 10.1002/solr.202000619

    54. [54]

      YANG B, LÜ G X, MA J T. Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen[J]. Chinese J. Inorg. Chem., 2024,40(4):736-750.

    55. [55]

      LI Z, TIAN B, ZHANG W Y, ZHANG X Q, WU Y Q, LU G X. Enhancing photoactivity for hydrogen generation by electron tunneling via flip-flop hopping over iodinated graphitic carbon nitride[J]. Appl. Catal. B-Environ., 2017,204:33-42. doi: 10.1016/j.apcatb.2016.11.020

    56. [56]

      LI Z, TIAN B, ZHEN W L, ZHANG W Y, WU Y Q, LU G X. Enhancing photoactivity for hydrogen generation by electron tunneling via flip-flop hopping over Mobius strip-like RGO[J]. Appl. Catal. B-Environ., 2017,219:501-510.

    57. [57]

      MIN S X, HOU J H, LEI Y G, MA X H, LU G X. Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution[J]. Appl. Surf. Sci., 2017,396:1375-1382.

    58. [58]

      ZHANG W Y, LU G X. The enhancement of electron transportation and photo-catalytic activity for hydrogen generation by introducing spin-polarized current into dye-sensitized photo-catalyst[J]. Catal. Sci. Technol., 2016,6(21):7693-7697.

    59. [59]

      ZHANG Z Z, BI Y P. Sulfur-oxygen bonded BiVO4 photoanodes and FeNi catalysts toward efficient oxygen evolution[J]. Journal of Molecular Catalysis (China), 2023,37(6):535-544.

    60. [60]

      ZHANG W Y, GAO W, ZHANG X Q, LI Z, LU G X. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges, and future[J]. Appl. Surf. Sci., 2018,434:643-668.

    61. [61]

      ZHANG X Q, LU G X. The spin-orbit coupling induced spin flip and its role in the enhancement of the photocatalytic hydrogen evolution over iodinated graphene oxide[J]. Carbon, 2016,108:215-224.

    62. [62]

      ZHANG H Y, GUO J W, GONG J R, XIN X, LI H W, YANG J M, HUANG S S. Study on the electronic structure modulation and photocatalytic performance of bismuth oxychloride photocatalysts[J]. Journal of Molecular Catalysis. (China), 2022,36(5):433-445.

    63. [63]

      TIAN B, GAO W, NING X F, WU Y Q, LU G X. Enhancing water splitting activity by protecting hydrogen evolution activity site from poisoning of oxygen species[J]. Appl. Catal. B-Environ., 2019,249:138-146.

    64. [64]

      WANG Y X, LIU Y J, TAO R, FAN X X. Preparation and photocatalytic properties of K/Cl doped g‑C3N4[J]. Journal of Molecular Catalysis. (China), 2022,36(6):561-570.

    65. [65]

      ZHANG Z Y, ZHANG X, SHI C C. Covalent organic frameworks supported noble-metal Pt for electrocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis (China), 2024,38(1):42-50.

    66. [66]

      WANG M, LI Z, WU Y Q, MA J T, LU G X. Inhibition of hydrogen and oxygen reverse recombination reaction over Pt/TiO2 by F- ions and its impact on the photocatalytic hydrogen formation[J]. J. Catal., 2017,353:162-170.

    67. [67]

      WANG M, LIU H X, MA J T, LU G X. The activity enhancement of photocatalytic water splitting by F- pre-occupation on Pt(100) and Pt(111) co-catalyst facets[J]. Appl. Catal. B-Environ., 2020,266118647.

    68. [68]

      WANG M, ZHEN W L, TIAN B, MA J T, LU G X. The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst[J]. Appl. Catal. B-Environ., 2018,236:240-252.

    69. [69]

      TIAN B, YANG B J, LI J, LI Z, ZHEN W L, WU Y Q, LU G X. Water splitting by CdS/Pt/WO3-CeOx photocatalysts with assisting of artificial blood perfluorodecalin[J]. J. Catal., 2017,350:189-196.

    70. [70]

      LI Z, TIAN B, ZHEN W L, WU Y Q, LU G X. Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation[J]. Appl. Catal. B-Environ., 2017,203:408-415.

    71. [71]

      ZHANG X Q, LUO D, ZHANG W Y, GAO W, NING X F, LIU H X, TIAN B, YANG B J, LU G X. Inhibition of hydrogen and oxygen recombination over amide-functionalized graphene and the enhancement of photocatalytic hydrogen generation in dye-sensitized AF-RGO/Pt photocatalyst dispersion[J]. Appl. Catal. B-Environ., 2018,232:371-383.

    72. [72]

      CHEN Y, YANG T X, LI J, WU M X, SHANG J P, GUO Y, LI Z P. Hydrogen evolution research of Ru-Ni/C catalyst in alkaline medium[J]. Journal of Molecular Catalysis (China), 2023,37(2):142-150.

    73. [73]

      HOU H X, ZHANG J Y, CAI P L, LIN J. Ultrasound-driven deposition of Au nanoparticles on CdS for efficient photocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis (China), 2022,36(2):129-136.

    74. [74]

      ZHEN W L, GAO H B, TIAN B, MA J T, LU G X. Fabrication of low adsorption energy Ni-Mo cluster cocatalyst in metal-organic frameworks for visible photocatalytic hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2016,8(17):10808-10819.

    75. [75]

      ZHEN W L, MA J T, LU G X. Small-sized Ni(111) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation[J]. Appl. Catal. B-Environ., 2016,190:12-25.

    76. [76]

      ZHEN W L, JIAO W J, WU Y Q, JING H W, LU G X. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst[J]. Catal. Sci. Technol., 2017,7(21):5028-5037.

    77. [77]

      GAO H B, ZHEN W L, MA J T, LU G X. High efficient solar hydrogen generation by modulation of Co-Ni sulfide (220) surface structure and adjusting adsorption hydrogen energy[J]. Appl. Catal. B-Environ., 2017,206:353-363.

    78. [78]

      LI Z, WU Y Q, LU G X. Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under visible light irradiation[J]. Appl. Catal. B-Environ., 2016,188:56-64.

    79. [79]

      TIAN B, ZHEN W L, GAO H B, ZHANG X Q, LI Z, LU G X. Carboxyl-assisted synthesis of Co nanorods with high energy facet on graphene oxide sheets for efficient photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2017,203:789-797.

    80. [80]

      ZHEN W L, GAO F, TIAN B, DING P, DENG Y B, LI Z, GAO H B, LU G X. Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal-organic frameworks at low temperature[J]. J. Catal., 2017,348:200-211.

    81. [81]

      TIAN B, LI Z, ZHEN W L, ZHANG X Q, LU G X. Fe2S2 nano-clusters catalyze water splitting by removing formed oxygen using aid of an artificial gill under visible light[J]. J. Catal., 2017,352:572-578.

    82. [82]

      ZHANG W Y, KONG C, GAO W, LU G X. Intrinsic magnetic characteristics-dependent charge transfer and visible photo-catalytic H2 evolution reaction (HER) properties of a Fe3O4@PPy@Pt catalyst[J]. Chem. Commun., 2016,52(14):3038-3041.

    83. [83]

      LI Z, KONG C, LU G X. Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu- and Fe-doped g-C3N4[J]. J. Phys. Chem. C, 2016,120(1):56-63.

    84. [84]

      WU M X, ZHANG Y F, YANG X M, SHANG J P, GUO Y, LI Z P. NiFeOOH nanosheets self-supported on the NiFe alloy foam for oxygen evolution reaction[J]. Journal of Molecular Catalysis (China), 2023,37(6):528-534.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(0)
  • Abstract views(438)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return